first commit
This commit is contained in:
21
app_vue/node_modules/fraction.js/LICENSE
generated
vendored
Normal file
21
app_vue/node_modules/fraction.js/LICENSE
generated
vendored
Normal file
@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 Robert Eisele
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
466
app_vue/node_modules/fraction.js/README.md
generated
vendored
Normal file
466
app_vue/node_modules/fraction.js/README.md
generated
vendored
Normal file
@ -0,0 +1,466 @@
|
||||
# Fraction.js - ℚ in JavaScript
|
||||
|
||||
[](https://npmjs.org/package/fraction.js "View this project on npm")
|
||||
[](http://opensource.org/licenses/MIT)
|
||||
|
||||
|
||||
Tired of inprecise numbers represented by doubles, which have to store rational and irrational numbers like PI or sqrt(2) the same way? Obviously the following problem is preventable:
|
||||
|
||||
```javascript
|
||||
1 / 98 * 98 // = 0.9999999999999999
|
||||
```
|
||||
|
||||
If you need more precision or just want a fraction as a result, just include *Fraction.js*:
|
||||
|
||||
```javascript
|
||||
var Fraction = require('fraction.js');
|
||||
// or
|
||||
import Fraction from 'fraction.js';
|
||||
```
|
||||
|
||||
and give it a trial:
|
||||
|
||||
```javascript
|
||||
Fraction(1).div(98).mul(98) // = 1
|
||||
```
|
||||
|
||||
Internally, numbers are represented as *numerator / denominator*, which adds just a little overhead. However, the library is written with performance and accuracy in mind, which makes it the perfect basis for [Polynomial.js](https://github.com/infusion/Polynomial.js) and [Math.js](https://github.com/josdejong/mathjs).
|
||||
|
||||
Convert decimal to fraction
|
||||
===
|
||||
The simplest job for fraction.js is to get a fraction out of a decimal:
|
||||
```javascript
|
||||
var x = new Fraction(1.88);
|
||||
var res = x.toFraction(true); // String "1 22/25"
|
||||
```
|
||||
|
||||
Examples / Motivation
|
||||
===
|
||||
A simple example might be
|
||||
|
||||
```javascript
|
||||
var f = new Fraction("9.4'31'"); // 9.4313131313131...
|
||||
f.mul([-4, 3]).mod("4.'8'"); // 4.88888888888888...
|
||||
```
|
||||
The result is
|
||||
|
||||
```javascript
|
||||
console.log(f.toFraction()); // -4154 / 1485
|
||||
```
|
||||
You could of course also access the sign (s), numerator (n) and denominator (d) on your own:
|
||||
```javascript
|
||||
f.s * f.n / f.d = -1 * 4154 / 1485 = -2.797306...
|
||||
```
|
||||
|
||||
If you would try to calculate it yourself, you would come up with something like:
|
||||
|
||||
```javascript
|
||||
(9.4313131 * (-4 / 3)) % 4.888888 = -2.797308133...
|
||||
```
|
||||
|
||||
Quite okay, but yea - not as accurate as it could be.
|
||||
|
||||
|
||||
Laplace Probability
|
||||
===
|
||||
Simple example. What's the probability of throwing a 3, and 1 or 4, and 2 or 4 or 6 with a fair dice?
|
||||
|
||||
P({3}):
|
||||
```javascript
|
||||
var p = new Fraction([3].length, 6).toString(); // 0.1(6)
|
||||
```
|
||||
|
||||
P({1, 4}):
|
||||
```javascript
|
||||
var p = new Fraction([1, 4].length, 6).toString(); // 0.(3)
|
||||
```
|
||||
|
||||
P({2, 4, 6}):
|
||||
```javascript
|
||||
var p = new Fraction([2, 4, 6].length, 6).toString(); // 0.5
|
||||
```
|
||||
|
||||
Convert degrees/minutes/seconds to precise rational representation:
|
||||
===
|
||||
|
||||
57+45/60+17/3600
|
||||
```javascript
|
||||
var deg = 57; // 57°
|
||||
var min = 45; // 45 Minutes
|
||||
var sec = 17; // 17 Seconds
|
||||
|
||||
new Fraction(deg).add(min, 60).add(sec, 3600).toString() // -> 57.7547(2)
|
||||
```
|
||||
|
||||
|
||||
Rational approximation of irrational numbers
|
||||
===
|
||||
|
||||
Now it's getting messy ;d To approximate a number like *sqrt(5) - 2* with a numerator and denominator, you can reformat the equation as follows: *pow(n / d + 2, 2) = 5*.
|
||||
|
||||
Then the following algorithm will generate the rational number besides the binary representation.
|
||||
|
||||
```javascript
|
||||
var x = "/", s = "";
|
||||
|
||||
var a = new Fraction(0),
|
||||
b = new Fraction(1);
|
||||
for (var n = 0; n <= 10; n++) {
|
||||
|
||||
var c = a.add(b).div(2);
|
||||
|
||||
console.log(n + "\t" + a + "\t" + b + "\t" + c + "\t" + x);
|
||||
|
||||
if (c.add(2).pow(2) < 5) {
|
||||
a = c;
|
||||
x = "1";
|
||||
} else {
|
||||
b = c;
|
||||
x = "0";
|
||||
}
|
||||
s+= x;
|
||||
}
|
||||
console.log(s)
|
||||
```
|
||||
|
||||
The result is
|
||||
|
||||
```
|
||||
n a[n] b[n] c[n] x[n]
|
||||
0 0/1 1/1 1/2 /
|
||||
1 0/1 1/2 1/4 0
|
||||
2 0/1 1/4 1/8 0
|
||||
3 1/8 1/4 3/16 1
|
||||
4 3/16 1/4 7/32 1
|
||||
5 7/32 1/4 15/64 1
|
||||
6 15/64 1/4 31/128 1
|
||||
7 15/64 31/128 61/256 0
|
||||
8 15/64 61/256 121/512 0
|
||||
9 15/64 121/512 241/1024 0
|
||||
10 241/1024 121/512 483/2048 1
|
||||
```
|
||||
Thus the approximation after 11 iterations of the bisection method is *483 / 2048* and the binary representation is 0.00111100011 (see [WolframAlpha](http://www.wolframalpha.com/input/?i=sqrt%285%29-2+binary))
|
||||
|
||||
|
||||
I published another example on how to approximate PI with fraction.js on my [blog](http://www.xarg.org/2014/03/precise-calculations-in-javascript/) (Still not the best idea to approximate irrational numbers, but it illustrates the capabilities of Fraction.js perfectly).
|
||||
|
||||
|
||||
Get the exact fractional part of a number
|
||||
---
|
||||
```javascript
|
||||
var f = new Fraction("-6.(3416)");
|
||||
console.log("" + f.mod(1).abs()); // 0.(3416)
|
||||
```
|
||||
|
||||
Mathematical correct modulo
|
||||
---
|
||||
The behaviour on negative congruences is different to most modulo implementations in computer science. Even the *mod()* function of Fraction.js behaves in the typical way. To solve the problem of having the mathematical correct modulo with Fraction.js you could come up with this:
|
||||
|
||||
```javascript
|
||||
var a = -1;
|
||||
var b = 10.99;
|
||||
|
||||
console.log(new Fraction(a)
|
||||
.mod(b)); // Not correct, usual Modulo
|
||||
|
||||
console.log(new Fraction(a)
|
||||
.mod(b).add(b).mod(b)); // Correct! Mathematical Modulo
|
||||
```
|
||||
|
||||
fmod() impreciseness circumvented
|
||||
---
|
||||
It turns out that Fraction.js outperforms almost any fmod() implementation, including JavaScript itself, [php.js](http://phpjs.org/functions/fmod/), C++, Python, Java and even Wolframalpha due to the fact that numbers like 0.05, 0.1, ... are infinite decimal in base 2.
|
||||
|
||||
The equation *fmod(4.55, 0.05)* gives *0.04999999999999957*, wolframalpha says *1/20*. The correct answer should be **zero**, as 0.05 divides 4.55 without any remainder.
|
||||
|
||||
|
||||
Parser
|
||||
===
|
||||
|
||||
Any function (see below) as well as the constructor of the *Fraction* class parses its input and reduce it to the smallest term.
|
||||
|
||||
You can pass either Arrays, Objects, Integers, Doubles or Strings.
|
||||
|
||||
Arrays / Objects
|
||||
---
|
||||
```javascript
|
||||
new Fraction(numerator, denominator);
|
||||
new Fraction([numerator, denominator]);
|
||||
new Fraction({n: numerator, d: denominator});
|
||||
```
|
||||
|
||||
Integers
|
||||
---
|
||||
```javascript
|
||||
new Fraction(123);
|
||||
```
|
||||
|
||||
Doubles
|
||||
---
|
||||
```javascript
|
||||
new Fraction(55.4);
|
||||
```
|
||||
|
||||
**Note:** If you pass a double as it is, Fraction.js will perform a number analysis based on Farey Sequences. If you concern performance, cache Fraction.js objects and pass arrays/objects.
|
||||
|
||||
The method is really precise, but too large exact numbers, like 1234567.9991829 will result in a wrong approximation. If you want to keep the number as it is, convert it to a string, as the string parser will not perform any further observations. If you have problems with the approximation, in the file `examples/approx.js` is a different approximation algorithm, which might work better in some more specific use-cases.
|
||||
|
||||
|
||||
Strings
|
||||
---
|
||||
```javascript
|
||||
new Fraction("123.45");
|
||||
new Fraction("123/45"); // A rational number represented as two decimals, separated by a slash
|
||||
new Fraction("123:45"); // A rational number represented as two decimals, separated by a colon
|
||||
new Fraction("4 123/45"); // A rational number represented as a whole number and a fraction
|
||||
new Fraction("123.'456'"); // Note the quotes, see below!
|
||||
new Fraction("123.(456)"); // Note the brackets, see below!
|
||||
new Fraction("123.45'6'"); // Note the quotes, see below!
|
||||
new Fraction("123.45(6)"); // Note the brackets, see below!
|
||||
```
|
||||
|
||||
Two arguments
|
||||
---
|
||||
```javascript
|
||||
new Fraction(3, 2); // 3/2 = 1.5
|
||||
```
|
||||
|
||||
Repeating decimal places
|
||||
---
|
||||
*Fraction.js* can easily handle repeating decimal places. For example *1/3* is *0.3333...*. There is only one repeating digit. As you can see in the examples above, you can pass a number like *1/3* as "0.'3'" or "0.(3)", which are synonym. There are no tests to parse something like 0.166666666 to 1/6! If you really want to handle this number, wrap around brackets on your own with the function below for example: 0.1(66666666)
|
||||
|
||||
Assume you want to divide 123.32 / 33.6(567). [WolframAlpha](http://www.wolframalpha.com/input/?i=123.32+%2F+%2812453%2F370%29) states that you'll get a period of 1776 digits. *Fraction.js* comes to the same result. Give it a try:
|
||||
|
||||
```javascript
|
||||
var f = new Fraction("123.32");
|
||||
console.log("Bam: " + f.div("33.6(567)"));
|
||||
```
|
||||
|
||||
To automatically make a number like "0.123123123" to something more Fraction.js friendly like "0.(123)", I hacked this little brute force algorithm in a 10 minutes. Improvements are welcome...
|
||||
|
||||
```javascript
|
||||
function formatDecimal(str) {
|
||||
|
||||
var comma, pre, offset, pad, times, repeat;
|
||||
|
||||
if (-1 === (comma = str.indexOf(".")))
|
||||
return str;
|
||||
|
||||
pre = str.substr(0, comma + 1);
|
||||
str = str.substr(comma + 1);
|
||||
|
||||
for (var i = 0; i < str.length; i++) {
|
||||
|
||||
offset = str.substr(0, i);
|
||||
|
||||
for (var j = 0; j < 5; j++) {
|
||||
|
||||
pad = str.substr(i, j + 1);
|
||||
|
||||
times = Math.ceil((str.length - offset.length) / pad.length);
|
||||
|
||||
repeat = new Array(times + 1).join(pad); // Silly String.repeat hack
|
||||
|
||||
if (0 === (offset + repeat).indexOf(str)) {
|
||||
return pre + offset + "(" + pad + ")";
|
||||
}
|
||||
}
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
var f, x = formatDecimal("13.0123123123"); // = 13.0(123)
|
||||
if (x !== null) {
|
||||
f = new Fraction(x);
|
||||
}
|
||||
```
|
||||
|
||||
Attributes
|
||||
===
|
||||
|
||||
The Fraction object allows direct access to the numerator, denominator and sign attributes. It is ensured that only the sign-attribute holds sign information so that a sign comparison is only necessary against this attribute.
|
||||
|
||||
```javascript
|
||||
var f = new Fraction('-1/2');
|
||||
console.log(f.n); // Numerator: 1
|
||||
console.log(f.d); // Denominator: 2
|
||||
console.log(f.s); // Sign: -1
|
||||
```
|
||||
|
||||
|
||||
Functions
|
||||
===
|
||||
|
||||
Fraction abs()
|
||||
---
|
||||
Returns the actual number without any sign information
|
||||
|
||||
Fraction neg()
|
||||
---
|
||||
Returns the actual number with flipped sign in order to get the additive inverse
|
||||
|
||||
Fraction add(n)
|
||||
---
|
||||
Returns the sum of the actual number and the parameter n
|
||||
|
||||
Fraction sub(n)
|
||||
---
|
||||
Returns the difference of the actual number and the parameter n
|
||||
|
||||
Fraction mul(n)
|
||||
---
|
||||
Returns the product of the actual number and the parameter n
|
||||
|
||||
Fraction div(n)
|
||||
---
|
||||
Returns the quotient of the actual number and the parameter n
|
||||
|
||||
Fraction pow(exp)
|
||||
---
|
||||
Returns the power of the actual number, raised to an possible rational exponent. If the result becomes non-rational the function returns `null`.
|
||||
|
||||
Fraction mod(n)
|
||||
---
|
||||
Returns the modulus (rest of the division) of the actual object and n (this % n). It's a much more precise [fmod()](#fmod-impreciseness-circumvented) if you like. Please note that *mod()* is just like the modulo operator of most programming languages. If you want a mathematical correct modulo, see [here](#mathematical-correct-modulo).
|
||||
|
||||
Fraction mod()
|
||||
---
|
||||
Returns the modulus (rest of the division) of the actual object (numerator mod denominator)
|
||||
|
||||
Fraction gcd(n)
|
||||
---
|
||||
Returns the fractional greatest common divisor
|
||||
|
||||
Fraction lcm(n)
|
||||
---
|
||||
Returns the fractional least common multiple
|
||||
|
||||
Fraction ceil([places=0-16])
|
||||
---
|
||||
Returns the ceiling of a rational number with Math.ceil
|
||||
|
||||
Fraction floor([places=0-16])
|
||||
---
|
||||
Returns the floor of a rational number with Math.floor
|
||||
|
||||
Fraction round([places=0-16])
|
||||
---
|
||||
Returns the rational number rounded with Math.round
|
||||
|
||||
Fraction roundTo(multiple)
|
||||
---
|
||||
Rounds a fraction to the closest multiple of another fraction.
|
||||
|
||||
Fraction inverse()
|
||||
---
|
||||
Returns the multiplicative inverse of the actual number (n / d becomes d / n) in order to get the reciprocal
|
||||
|
||||
Fraction simplify([eps=0.001])
|
||||
---
|
||||
Simplifies the rational number under a certain error threshold. Ex. `0.333` will be `1/3` with `eps=0.001`
|
||||
|
||||
boolean equals(n)
|
||||
---
|
||||
Check if two numbers are equal
|
||||
|
||||
int compare(n)
|
||||
---
|
||||
Compare two numbers.
|
||||
```
|
||||
result < 0: n is greater than actual number
|
||||
result > 0: n is smaller than actual number
|
||||
result = 0: n is equal to the actual number
|
||||
```
|
||||
|
||||
boolean divisible(n)
|
||||
---
|
||||
Check if two numbers are divisible (n divides this)
|
||||
|
||||
double valueOf()
|
||||
---
|
||||
Returns a decimal representation of the fraction
|
||||
|
||||
String toString([decimalPlaces=15])
|
||||
---
|
||||
Generates an exact string representation of the actual object. For repeated decimal places all digits are collected within brackets, like `1/3 = "0.(3)"`. For all other numbers, up to `decimalPlaces` significant digits are collected - which includes trailing zeros if the number is getting truncated. However, `1/2 = "0.5"` without trailing zeros of course.
|
||||
|
||||
**Note:** As `valueOf()` and `toString()` are provided, `toString()` is only called implicitly in a real string context. Using the plus-operator like `"123" + new Fraction` will call valueOf(), because JavaScript tries to combine two primitives first and concatenates them later, as string will be the more dominant type. `alert(new Fraction)` or `String(new Fraction)` on the other hand will do what you expect. If you really want to have control, you should call `toString()` or `valueOf()` explicitly!
|
||||
|
||||
String toLatex(excludeWhole=false)
|
||||
---
|
||||
Generates an exact LaTeX representation of the actual object. You can see a [live demo](http://www.xarg.org/2014/03/precise-calculations-in-javascript/) on my blog.
|
||||
|
||||
The optional boolean parameter indicates if you want to exclude the whole part. "1 1/3" instead of "4/3"
|
||||
|
||||
String toFraction(excludeWhole=false)
|
||||
---
|
||||
Gets a string representation of the fraction
|
||||
|
||||
The optional boolean parameter indicates if you want to exclude the whole part. "1 1/3" instead of "4/3"
|
||||
|
||||
Array toContinued()
|
||||
---
|
||||
Gets an array of the fraction represented as a continued fraction. The first element always contains the whole part.
|
||||
|
||||
```javascript
|
||||
var f = new Fraction('88/33');
|
||||
var c = f.toContinued(); // [2, 1, 2]
|
||||
```
|
||||
|
||||
Fraction clone()
|
||||
---
|
||||
Creates a copy of the actual Fraction object
|
||||
|
||||
|
||||
Exceptions
|
||||
===
|
||||
If a really hard error occurs (parsing error, division by zero), *fraction.js* throws exceptions! Please make sure you handle them correctly.
|
||||
|
||||
|
||||
|
||||
Installation
|
||||
===
|
||||
Installing fraction.js is as easy as cloning this repo or use the following command:
|
||||
|
||||
```
|
||||
npm install fraction.js
|
||||
```
|
||||
|
||||
Using Fraction.js with the browser
|
||||
===
|
||||
```html
|
||||
<script src="fraction.js"></script>
|
||||
<script>
|
||||
console.log(Fraction("123/456"));
|
||||
</script>
|
||||
```
|
||||
|
||||
Using Fraction.js with TypeScript
|
||||
===
|
||||
```js
|
||||
import Fraction from "fraction.js";
|
||||
console.log(Fraction("123/456"));
|
||||
```
|
||||
|
||||
Coding Style
|
||||
===
|
||||
As every library I publish, fraction.js is also built to be as small as possible after compressing it with Google Closure Compiler in advanced mode. Thus the coding style orientates a little on maxing-out the compression rate. Please make sure you keep this style if you plan to extend the library.
|
||||
|
||||
|
||||
Precision
|
||||
===
|
||||
Fraction.js tries to circumvent floating point errors, by having an internal representation of numerator and denominator. As it relies on JavaScript, there is also a limit. The biggest number representable is `Number.MAX_SAFE_INTEGER / 1` and the smallest is `-1 / Number.MAX_SAFE_INTEGER`, with `Number.MAX_SAFE_INTEGER=9007199254740991`. If this is not enough, there is `bigfraction.js` shipped experimentally, which relies on `BigInt` and should become the new Fraction.js eventually.
|
||||
|
||||
Testing
|
||||
===
|
||||
If you plan to enhance the library, make sure you add test cases and all the previous tests are passing. You can test the library with
|
||||
|
||||
```
|
||||
npm test
|
||||
```
|
||||
|
||||
|
||||
Copyright and licensing
|
||||
===
|
||||
Copyright (c) 2023, [Robert Eisele](https://raw.org/)
|
||||
Licensed under the MIT license.
|
899
app_vue/node_modules/fraction.js/bigfraction.js
generated
vendored
Normal file
899
app_vue/node_modules/fraction.js/bigfraction.js
generated
vendored
Normal file
@ -0,0 +1,899 @@
|
||||
/**
|
||||
* @license Fraction.js v4.2.1 20/08/2023
|
||||
* https://www.xarg.org/2014/03/rational-numbers-in-javascript/
|
||||
*
|
||||
* Copyright (c) 2023, Robert Eisele (robert@raw.org)
|
||||
* Dual licensed under the MIT or GPL Version 2 licenses.
|
||||
**/
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* This class offers the possibility to calculate fractions.
|
||||
* You can pass a fraction in different formats. Either as array, as double, as string or as an integer.
|
||||
*
|
||||
* Array/Object form
|
||||
* [ 0 => <numerator>, 1 => <denominator> ]
|
||||
* [ n => <numerator>, d => <denominator> ]
|
||||
*
|
||||
* Integer form
|
||||
* - Single integer value
|
||||
*
|
||||
* Double form
|
||||
* - Single double value
|
||||
*
|
||||
* String form
|
||||
* 123.456 - a simple double
|
||||
* 123/456 - a string fraction
|
||||
* 123.'456' - a double with repeating decimal places
|
||||
* 123.(456) - synonym
|
||||
* 123.45'6' - a double with repeating last place
|
||||
* 123.45(6) - synonym
|
||||
*
|
||||
* Example:
|
||||
*
|
||||
* let f = new Fraction("9.4'31'");
|
||||
* f.mul([-4, 3]).div(4.9);
|
||||
*
|
||||
*/
|
||||
|
||||
(function(root) {
|
||||
|
||||
"use strict";
|
||||
|
||||
// Set Identity function to downgrade BigInt to Number if needed
|
||||
if (typeof BigInt === 'undefined') BigInt = function(n) { if (isNaN(n)) throw new Error(""); return n; };
|
||||
|
||||
const C_ONE = BigInt(1);
|
||||
const C_ZERO = BigInt(0);
|
||||
const C_TEN = BigInt(10);
|
||||
const C_TWO = BigInt(2);
|
||||
const C_FIVE = BigInt(5);
|
||||
|
||||
// Maximum search depth for cyclic rational numbers. 2000 should be more than enough.
|
||||
// Example: 1/7 = 0.(142857) has 6 repeating decimal places.
|
||||
// If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits
|
||||
const MAX_CYCLE_LEN = 2000;
|
||||
|
||||
// Parsed data to avoid calling "new" all the time
|
||||
const P = {
|
||||
"s": C_ONE,
|
||||
"n": C_ZERO,
|
||||
"d": C_ONE
|
||||
};
|
||||
|
||||
function assign(n, s) {
|
||||
|
||||
try {
|
||||
n = BigInt(n);
|
||||
} catch (e) {
|
||||
throw InvalidParameter();
|
||||
}
|
||||
return n * s;
|
||||
}
|
||||
|
||||
// Creates a new Fraction internally without the need of the bulky constructor
|
||||
function newFraction(n, d) {
|
||||
|
||||
if (d === C_ZERO) {
|
||||
throw DivisionByZero();
|
||||
}
|
||||
|
||||
const f = Object.create(Fraction.prototype);
|
||||
f["s"] = n < C_ZERO ? -C_ONE : C_ONE;
|
||||
|
||||
n = n < C_ZERO ? -n : n;
|
||||
|
||||
const a = gcd(n, d);
|
||||
|
||||
f["n"] = n / a;
|
||||
f["d"] = d / a;
|
||||
return f;
|
||||
}
|
||||
|
||||
function factorize(num) {
|
||||
|
||||
const factors = {};
|
||||
|
||||
let n = num;
|
||||
let i = C_TWO;
|
||||
let s = C_FIVE - C_ONE;
|
||||
|
||||
while (s <= n) {
|
||||
|
||||
while (n % i === C_ZERO) {
|
||||
n/= i;
|
||||
factors[i] = (factors[i] || C_ZERO) + C_ONE;
|
||||
}
|
||||
s+= C_ONE + C_TWO * i++;
|
||||
}
|
||||
|
||||
if (n !== num) {
|
||||
if (n > 1)
|
||||
factors[n] = (factors[n] || C_ZERO) + C_ONE;
|
||||
} else {
|
||||
factors[num] = (factors[num] || C_ZERO) + C_ONE;
|
||||
}
|
||||
return factors;
|
||||
}
|
||||
|
||||
const parse = function(p1, p2) {
|
||||
|
||||
let n = C_ZERO, d = C_ONE, s = C_ONE;
|
||||
|
||||
if (p1 === undefined || p1 === null) {
|
||||
/* void */
|
||||
} else if (p2 !== undefined) {
|
||||
n = BigInt(p1);
|
||||
d = BigInt(p2);
|
||||
s = n * d;
|
||||
|
||||
if (n % C_ONE !== C_ZERO || d % C_ONE !== C_ZERO) {
|
||||
throw NonIntegerParameter();
|
||||
}
|
||||
|
||||
} else if (typeof p1 === "object") {
|
||||
if ("d" in p1 && "n" in p1) {
|
||||
n = BigInt(p1["n"]);
|
||||
d = BigInt(p1["d"]);
|
||||
if ("s" in p1)
|
||||
n*= BigInt(p1["s"]);
|
||||
} else if (0 in p1) {
|
||||
n = BigInt(p1[0]);
|
||||
if (1 in p1)
|
||||
d = BigInt(p1[1]);
|
||||
} else if (p1 instanceof BigInt) {
|
||||
n = BigInt(p1);
|
||||
} else {
|
||||
throw InvalidParameter();
|
||||
}
|
||||
s = n * d;
|
||||
} else if (typeof p1 === "bigint") {
|
||||
n = p1;
|
||||
s = p1;
|
||||
d = C_ONE;
|
||||
} else if (typeof p1 === "number") {
|
||||
|
||||
if (isNaN(p1)) {
|
||||
throw InvalidParameter();
|
||||
}
|
||||
|
||||
if (p1 < 0) {
|
||||
s = -C_ONE;
|
||||
p1 = -p1;
|
||||
}
|
||||
|
||||
if (p1 % 1 === 0) {
|
||||
n = BigInt(p1);
|
||||
} else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow
|
||||
|
||||
let z = 1;
|
||||
|
||||
let A = 0, B = 1;
|
||||
let C = 1, D = 1;
|
||||
|
||||
let N = 10000000;
|
||||
|
||||
if (p1 >= 1) {
|
||||
z = 10 ** Math.floor(1 + Math.log10(p1));
|
||||
p1/= z;
|
||||
}
|
||||
|
||||
// Using Farey Sequences
|
||||
|
||||
while (B <= N && D <= N) {
|
||||
let M = (A + C) / (B + D);
|
||||
|
||||
if (p1 === M) {
|
||||
if (B + D <= N) {
|
||||
n = A + C;
|
||||
d = B + D;
|
||||
} else if (D > B) {
|
||||
n = C;
|
||||
d = D;
|
||||
} else {
|
||||
n = A;
|
||||
d = B;
|
||||
}
|
||||
break;
|
||||
|
||||
} else {
|
||||
|
||||
if (p1 > M) {
|
||||
A+= C;
|
||||
B+= D;
|
||||
} else {
|
||||
C+= A;
|
||||
D+= B;
|
||||
}
|
||||
|
||||
if (B > N) {
|
||||
n = C;
|
||||
d = D;
|
||||
} else {
|
||||
n = A;
|
||||
d = B;
|
||||
}
|
||||
}
|
||||
}
|
||||
n = BigInt(n) * BigInt(z);
|
||||
d = BigInt(d);
|
||||
|
||||
}
|
||||
|
||||
} else if (typeof p1 === "string") {
|
||||
|
||||
let ndx = 0;
|
||||
|
||||
let v = C_ZERO, w = C_ZERO, x = C_ZERO, y = C_ONE, z = C_ONE;
|
||||
|
||||
let match = p1.match(/\d+|./g);
|
||||
|
||||
if (match === null)
|
||||
throw InvalidParameter();
|
||||
|
||||
if (match[ndx] === '-') {// Check for minus sign at the beginning
|
||||
s = -C_ONE;
|
||||
ndx++;
|
||||
} else if (match[ndx] === '+') {// Check for plus sign at the beginning
|
||||
ndx++;
|
||||
}
|
||||
|
||||
if (match.length === ndx + 1) { // Check if it's just a simple number "1234"
|
||||
w = assign(match[ndx++], s);
|
||||
} else if (match[ndx + 1] === '.' || match[ndx] === '.') { // Check if it's a decimal number
|
||||
|
||||
if (match[ndx] !== '.') { // Handle 0.5 and .5
|
||||
v = assign(match[ndx++], s);
|
||||
}
|
||||
ndx++;
|
||||
|
||||
// Check for decimal places
|
||||
if (ndx + 1 === match.length || match[ndx + 1] === '(' && match[ndx + 3] === ')' || match[ndx + 1] === "'" && match[ndx + 3] === "'") {
|
||||
w = assign(match[ndx], s);
|
||||
y = C_TEN ** BigInt(match[ndx].length);
|
||||
ndx++;
|
||||
}
|
||||
|
||||
// Check for repeating places
|
||||
if (match[ndx] === '(' && match[ndx + 2] === ')' || match[ndx] === "'" && match[ndx + 2] === "'") {
|
||||
x = assign(match[ndx + 1], s);
|
||||
z = C_TEN ** BigInt(match[ndx + 1].length) - C_ONE;
|
||||
ndx+= 3;
|
||||
}
|
||||
|
||||
} else if (match[ndx + 1] === '/' || match[ndx + 1] === ':') { // Check for a simple fraction "123/456" or "123:456"
|
||||
w = assign(match[ndx], s);
|
||||
y = assign(match[ndx + 2], C_ONE);
|
||||
ndx+= 3;
|
||||
} else if (match[ndx + 3] === '/' && match[ndx + 1] === ' ') { // Check for a complex fraction "123 1/2"
|
||||
v = assign(match[ndx], s);
|
||||
w = assign(match[ndx + 2], s);
|
||||
y = assign(match[ndx + 4], C_ONE);
|
||||
ndx+= 5;
|
||||
}
|
||||
|
||||
if (match.length <= ndx) { // Check for more tokens on the stack
|
||||
d = y * z;
|
||||
s = /* void */
|
||||
n = x + d * v + z * w;
|
||||
} else {
|
||||
throw InvalidParameter();
|
||||
}
|
||||
|
||||
} else {
|
||||
throw InvalidParameter();
|
||||
}
|
||||
|
||||
if (d === C_ZERO) {
|
||||
throw DivisionByZero();
|
||||
}
|
||||
|
||||
P["s"] = s < C_ZERO ? -C_ONE : C_ONE;
|
||||
P["n"] = n < C_ZERO ? -n : n;
|
||||
P["d"] = d < C_ZERO ? -d : d;
|
||||
};
|
||||
|
||||
function modpow(b, e, m) {
|
||||
|
||||
let r = C_ONE;
|
||||
for (; e > C_ZERO; b = (b * b) % m, e >>= C_ONE) {
|
||||
|
||||
if (e & C_ONE) {
|
||||
r = (r * b) % m;
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
function cycleLen(n, d) {
|
||||
|
||||
for (; d % C_TWO === C_ZERO;
|
||||
d/= C_TWO) {
|
||||
}
|
||||
|
||||
for (; d % C_FIVE === C_ZERO;
|
||||
d/= C_FIVE) {
|
||||
}
|
||||
|
||||
if (d === C_ONE) // Catch non-cyclic numbers
|
||||
return C_ZERO;
|
||||
|
||||
// If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem:
|
||||
// 10^(d-1) % d == 1
|
||||
// However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone,
|
||||
// as we want to translate the numbers to strings.
|
||||
|
||||
let rem = C_TEN % d;
|
||||
let t = 1;
|
||||
|
||||
for (; rem !== C_ONE; t++) {
|
||||
rem = rem * C_TEN % d;
|
||||
|
||||
if (t > MAX_CYCLE_LEN)
|
||||
return C_ZERO; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1`
|
||||
}
|
||||
return BigInt(t);
|
||||
}
|
||||
|
||||
function cycleStart(n, d, len) {
|
||||
|
||||
let rem1 = C_ONE;
|
||||
let rem2 = modpow(C_TEN, len, d);
|
||||
|
||||
for (let t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE)
|
||||
// Solve 10^s == 10^(s+t) (mod d)
|
||||
|
||||
if (rem1 === rem2)
|
||||
return BigInt(t);
|
||||
|
||||
rem1 = rem1 * C_TEN % d;
|
||||
rem2 = rem2 * C_TEN % d;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
function gcd(a, b) {
|
||||
|
||||
if (!a)
|
||||
return b;
|
||||
if (!b)
|
||||
return a;
|
||||
|
||||
while (1) {
|
||||
a%= b;
|
||||
if (!a)
|
||||
return b;
|
||||
b%= a;
|
||||
if (!b)
|
||||
return a;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Module constructor
|
||||
*
|
||||
* @constructor
|
||||
* @param {number|Fraction=} a
|
||||
* @param {number=} b
|
||||
*/
|
||||
function Fraction(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
|
||||
if (this instanceof Fraction) {
|
||||
a = gcd(P["d"], P["n"]); // Abuse a
|
||||
this["s"] = P["s"];
|
||||
this["n"] = P["n"] / a;
|
||||
this["d"] = P["d"] / a;
|
||||
} else {
|
||||
return newFraction(P['s'] * P['n'], P['d']);
|
||||
}
|
||||
}
|
||||
|
||||
var DivisionByZero = function() {return new Error("Division by Zero");};
|
||||
var InvalidParameter = function() {return new Error("Invalid argument");};
|
||||
var NonIntegerParameter = function() {return new Error("Parameters must be integer");};
|
||||
|
||||
Fraction.prototype = {
|
||||
|
||||
"s": C_ONE,
|
||||
"n": C_ZERO,
|
||||
"d": C_ONE,
|
||||
|
||||
/**
|
||||
* Calculates the absolute value
|
||||
*
|
||||
* Ex: new Fraction(-4).abs() => 4
|
||||
**/
|
||||
"abs": function() {
|
||||
|
||||
return newFraction(this["n"], this["d"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Inverts the sign of the current fraction
|
||||
*
|
||||
* Ex: new Fraction(-4).neg() => 4
|
||||
**/
|
||||
"neg": function() {
|
||||
|
||||
return newFraction(-this["s"] * this["n"], this["d"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Adds two rational numbers
|
||||
*
|
||||
* Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30
|
||||
**/
|
||||
"add": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return newFraction(
|
||||
this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"],
|
||||
this["d"] * P["d"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Subtracts two rational numbers
|
||||
*
|
||||
* Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30
|
||||
**/
|
||||
"sub": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return newFraction(
|
||||
this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"],
|
||||
this["d"] * P["d"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Multiplies two rational numbers
|
||||
*
|
||||
* Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111
|
||||
**/
|
||||
"mul": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return newFraction(
|
||||
this["s"] * P["s"] * this["n"] * P["n"],
|
||||
this["d"] * P["d"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Divides two rational numbers
|
||||
*
|
||||
* Ex: new Fraction("-17.(345)").inverse().div(3)
|
||||
**/
|
||||
"div": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return newFraction(
|
||||
this["s"] * P["s"] * this["n"] * P["d"],
|
||||
this["d"] * P["n"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Clones the actual object
|
||||
*
|
||||
* Ex: new Fraction("-17.(345)").clone()
|
||||
**/
|
||||
"clone": function() {
|
||||
return newFraction(this['s'] * this['n'], this['d']);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the modulo of two rational numbers - a more precise fmod
|
||||
*
|
||||
* Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6)
|
||||
**/
|
||||
"mod": function(a, b) {
|
||||
|
||||
if (a === undefined) {
|
||||
return newFraction(this["s"] * this["n"] % this["d"], C_ONE);
|
||||
}
|
||||
|
||||
parse(a, b);
|
||||
if (0 === P["n"] && 0 === this["d"]) {
|
||||
throw DivisionByZero();
|
||||
}
|
||||
|
||||
/*
|
||||
* First silly attempt, kinda slow
|
||||
*
|
||||
return that["sub"]({
|
||||
"n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)),
|
||||
"d": num["d"],
|
||||
"s": this["s"]
|
||||
});*/
|
||||
|
||||
/*
|
||||
* New attempt: a1 / b1 = a2 / b2 * q + r
|
||||
* => b2 * a1 = a2 * b1 * q + b1 * b2 * r
|
||||
* => (b2 * a1 % a2 * b1) / (b1 * b2)
|
||||
*/
|
||||
return newFraction(
|
||||
this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]),
|
||||
P["d"] * this["d"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the fractional gcd of two rational numbers
|
||||
*
|
||||
* Ex: new Fraction(5,8).gcd(3,7) => 1/56
|
||||
*/
|
||||
"gcd": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
|
||||
// gcd(a / b, c / d) = gcd(a, c) / lcm(b, d)
|
||||
|
||||
return newFraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the fractional lcm of two rational numbers
|
||||
*
|
||||
* Ex: new Fraction(5,8).lcm(3,7) => 15
|
||||
*/
|
||||
"lcm": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
|
||||
// lcm(a / b, c / d) = lcm(a, c) / gcd(b, d)
|
||||
|
||||
if (P["n"] === C_ZERO && this["n"] === C_ZERO) {
|
||||
return newFraction(C_ZERO, C_ONE);
|
||||
}
|
||||
return newFraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]));
|
||||
},
|
||||
|
||||
/**
|
||||
* Gets the inverse of the fraction, means numerator and denominator are exchanged
|
||||
*
|
||||
* Ex: new Fraction([-3, 4]).inverse() => -4 / 3
|
||||
**/
|
||||
"inverse": function() {
|
||||
return newFraction(this["s"] * this["d"], this["n"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the fraction to some integer exponent
|
||||
*
|
||||
* Ex: new Fraction(-1,2).pow(-3) => -8
|
||||
*/
|
||||
"pow": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
|
||||
// Trivial case when exp is an integer
|
||||
|
||||
if (P['d'] === C_ONE) {
|
||||
|
||||
if (P['s'] < C_ZERO) {
|
||||
return newFraction((this['s'] * this["d"]) ** P['n'], this["n"] ** P['n']);
|
||||
} else {
|
||||
return newFraction((this['s'] * this["n"]) ** P['n'], this["d"] ** P['n']);
|
||||
}
|
||||
}
|
||||
|
||||
// Negative roots become complex
|
||||
// (-a/b)^(c/d) = x
|
||||
// <=> (-1)^(c/d) * (a/b)^(c/d) = x
|
||||
// <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x
|
||||
// <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x # DeMoivre's formula
|
||||
// From which follows that only for c=0 the root is non-complex
|
||||
if (this['s'] < C_ZERO) return null;
|
||||
|
||||
// Now prime factor n and d
|
||||
let N = factorize(this['n']);
|
||||
let D = factorize(this['d']);
|
||||
|
||||
// Exponentiate and take root for n and d individually
|
||||
let n = C_ONE;
|
||||
let d = C_ONE;
|
||||
for (let k in N) {
|
||||
if (k === '1') continue;
|
||||
if (k === '0') {
|
||||
n = C_ZERO;
|
||||
break;
|
||||
}
|
||||
N[k]*= P['n'];
|
||||
|
||||
if (N[k] % P['d'] === C_ZERO) {
|
||||
N[k]/= P['d'];
|
||||
} else return null;
|
||||
n*= BigInt(k) ** N[k];
|
||||
}
|
||||
|
||||
for (let k in D) {
|
||||
if (k === '1') continue;
|
||||
D[k]*= P['n'];
|
||||
|
||||
if (D[k] % P['d'] === C_ZERO) {
|
||||
D[k]/= P['d'];
|
||||
} else return null;
|
||||
d*= BigInt(k) ** D[k];
|
||||
}
|
||||
|
||||
if (P['s'] < C_ZERO) {
|
||||
return newFraction(d, n);
|
||||
}
|
||||
return newFraction(n, d);
|
||||
},
|
||||
|
||||
/**
|
||||
* Check if two rational numbers are the same
|
||||
*
|
||||
* Ex: new Fraction(19.6).equals([98, 5]);
|
||||
**/
|
||||
"equals": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0
|
||||
},
|
||||
|
||||
/**
|
||||
* Check if two rational numbers are the same
|
||||
*
|
||||
* Ex: new Fraction(19.6).equals([98, 5]);
|
||||
**/
|
||||
"compare": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
let t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]);
|
||||
|
||||
return (C_ZERO < t) - (t < C_ZERO);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the ceil of a rational number
|
||||
*
|
||||
* Ex: new Fraction('4.(3)').ceil() => (5 / 1)
|
||||
**/
|
||||
"ceil": function(places) {
|
||||
|
||||
places = C_TEN ** BigInt(places || 0);
|
||||
|
||||
return newFraction(this["s"] * places * this["n"] / this["d"] +
|
||||
(places * this["n"] % this["d"] > C_ZERO && this["s"] >= C_ZERO ? C_ONE : C_ZERO),
|
||||
places);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the floor of a rational number
|
||||
*
|
||||
* Ex: new Fraction('4.(3)').floor() => (4 / 1)
|
||||
**/
|
||||
"floor": function(places) {
|
||||
|
||||
places = C_TEN ** BigInt(places || 0);
|
||||
|
||||
return newFraction(this["s"] * places * this["n"] / this["d"] -
|
||||
(places * this["n"] % this["d"] > C_ZERO && this["s"] < C_ZERO ? C_ONE : C_ZERO),
|
||||
places);
|
||||
},
|
||||
|
||||
/**
|
||||
* Rounds a rational numbers
|
||||
*
|
||||
* Ex: new Fraction('4.(3)').round() => (4 / 1)
|
||||
**/
|
||||
"round": function(places) {
|
||||
|
||||
places = C_TEN ** BigInt(places || 0);
|
||||
|
||||
/* Derivation:
|
||||
|
||||
s >= 0:
|
||||
round(n / d) = trunc(n / d) + (n % d) / d >= 0.5 ? 1 : 0
|
||||
= trunc(n / d) + 2(n % d) >= d ? 1 : 0
|
||||
s < 0:
|
||||
round(n / d) =-trunc(n / d) - (n % d) / d > 0.5 ? 1 : 0
|
||||
=-trunc(n / d) - 2(n % d) > d ? 1 : 0
|
||||
|
||||
=>:
|
||||
|
||||
round(s * n / d) = s * trunc(n / d) + s * (C + 2(n % d) > d ? 1 : 0)
|
||||
where C = s >= 0 ? 1 : 0, to fix the >= for the positve case.
|
||||
*/
|
||||
|
||||
return newFraction(this["s"] * places * this["n"] / this["d"] +
|
||||
this["s"] * ((this["s"] >= C_ZERO ? C_ONE : C_ZERO) + C_TWO * (places * this["n"] % this["d"]) > this["d"] ? C_ONE : C_ZERO),
|
||||
places);
|
||||
},
|
||||
|
||||
/**
|
||||
* Check if two rational numbers are divisible
|
||||
*
|
||||
* Ex: new Fraction(19.6).divisible(1.5);
|
||||
*/
|
||||
"divisible": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"])));
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns a decimal representation of the fraction
|
||||
*
|
||||
* Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183
|
||||
**/
|
||||
'valueOf': function() {
|
||||
// Best we can do so far
|
||||
return Number(this["s"] * this["n"]) / Number(this["d"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Creates a string representation of a fraction with all digits
|
||||
*
|
||||
* Ex: new Fraction("100.'91823'").toString() => "100.(91823)"
|
||||
**/
|
||||
'toString': function(dec) {
|
||||
|
||||
let N = this["n"];
|
||||
let D = this["d"];
|
||||
|
||||
function trunc(x) {
|
||||
return typeof x === 'bigint' ? x : Math.floor(x);
|
||||
}
|
||||
|
||||
dec = dec || 15; // 15 = decimal places when no repetition
|
||||
|
||||
let cycLen = cycleLen(N, D); // Cycle length
|
||||
let cycOff = cycleStart(N, D, cycLen); // Cycle start
|
||||
|
||||
let str = this['s'] < C_ZERO ? "-" : "";
|
||||
|
||||
// Append integer part
|
||||
str+= trunc(N / D);
|
||||
|
||||
N%= D;
|
||||
N*= C_TEN;
|
||||
|
||||
if (N)
|
||||
str+= ".";
|
||||
|
||||
if (cycLen) {
|
||||
|
||||
for (let i = cycOff; i--;) {
|
||||
str+= trunc(N / D);
|
||||
N%= D;
|
||||
N*= C_TEN;
|
||||
}
|
||||
str+= "(";
|
||||
for (let i = cycLen; i--;) {
|
||||
str+= trunc(N / D);
|
||||
N%= D;
|
||||
N*= C_TEN;
|
||||
}
|
||||
str+= ")";
|
||||
} else {
|
||||
for (let i = dec; N && i--;) {
|
||||
str+= trunc(N / D);
|
||||
N%= D;
|
||||
N*= C_TEN;
|
||||
}
|
||||
}
|
||||
return str;
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns a string-fraction representation of a Fraction object
|
||||
*
|
||||
* Ex: new Fraction("1.'3'").toFraction() => "4 1/3"
|
||||
**/
|
||||
'toFraction': function(excludeWhole) {
|
||||
|
||||
let n = this["n"];
|
||||
let d = this["d"];
|
||||
let str = this['s'] < C_ZERO ? "-" : "";
|
||||
|
||||
if (d === C_ONE) {
|
||||
str+= n;
|
||||
} else {
|
||||
let whole = n / d;
|
||||
if (excludeWhole && whole > C_ZERO) {
|
||||
str+= whole;
|
||||
str+= " ";
|
||||
n%= d;
|
||||
}
|
||||
|
||||
str+= n;
|
||||
str+= '/';
|
||||
str+= d;
|
||||
}
|
||||
return str;
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns a latex representation of a Fraction object
|
||||
*
|
||||
* Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}"
|
||||
**/
|
||||
'toLatex': function(excludeWhole) {
|
||||
|
||||
let n = this["n"];
|
||||
let d = this["d"];
|
||||
let str = this['s'] < C_ZERO ? "-" : "";
|
||||
|
||||
if (d === C_ONE) {
|
||||
str+= n;
|
||||
} else {
|
||||
let whole = n / d;
|
||||
if (excludeWhole && whole > C_ZERO) {
|
||||
str+= whole;
|
||||
n%= d;
|
||||
}
|
||||
|
||||
str+= "\\frac{";
|
||||
str+= n;
|
||||
str+= '}{';
|
||||
str+= d;
|
||||
str+= '}';
|
||||
}
|
||||
return str;
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns an array of continued fraction elements
|
||||
*
|
||||
* Ex: new Fraction("7/8").toContinued() => [0,1,7]
|
||||
*/
|
||||
'toContinued': function() {
|
||||
|
||||
let a = this['n'];
|
||||
let b = this['d'];
|
||||
let res = [];
|
||||
|
||||
do {
|
||||
res.push(a / b);
|
||||
let t = a % b;
|
||||
a = b;
|
||||
b = t;
|
||||
} while (a !== C_ONE);
|
||||
|
||||
return res;
|
||||
},
|
||||
|
||||
"simplify": function(eps) {
|
||||
|
||||
eps = eps || 0.001;
|
||||
|
||||
const thisABS = this['abs']();
|
||||
const cont = thisABS['toContinued']();
|
||||
|
||||
for (let i = 1; i < cont.length; i++) {
|
||||
|
||||
let s = newFraction(cont[i - 1], C_ONE);
|
||||
for (let k = i - 2; k >= 0; k--) {
|
||||
s = s['inverse']()['add'](cont[k]);
|
||||
}
|
||||
|
||||
if (Math.abs(s['sub'](thisABS).valueOf()) < eps) {
|
||||
return s['mul'](this['s']);
|
||||
}
|
||||
}
|
||||
return this;
|
||||
}
|
||||
};
|
||||
|
||||
if (typeof define === "function" && define["amd"]) {
|
||||
define([], function() {
|
||||
return Fraction;
|
||||
});
|
||||
} else if (typeof exports === "object") {
|
||||
Object.defineProperty(exports, "__esModule", { 'value': true });
|
||||
Fraction['default'] = Fraction;
|
||||
Fraction['Fraction'] = Fraction;
|
||||
module['exports'] = Fraction;
|
||||
} else {
|
||||
root['Fraction'] = Fraction;
|
||||
}
|
||||
|
||||
})(this);
|
904
app_vue/node_modules/fraction.js/fraction.cjs
generated
vendored
Normal file
904
app_vue/node_modules/fraction.js/fraction.cjs
generated
vendored
Normal file
@ -0,0 +1,904 @@
|
||||
/**
|
||||
* @license Fraction.js v4.3.7 31/08/2023
|
||||
* https://www.xarg.org/2014/03/rational-numbers-in-javascript/
|
||||
*
|
||||
* Copyright (c) 2023, Robert Eisele (robert@raw.org)
|
||||
* Dual licensed under the MIT or GPL Version 2 licenses.
|
||||
**/
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* This class offers the possibility to calculate fractions.
|
||||
* You can pass a fraction in different formats. Either as array, as double, as string or as an integer.
|
||||
*
|
||||
* Array/Object form
|
||||
* [ 0 => <numerator>, 1 => <denominator> ]
|
||||
* [ n => <numerator>, d => <denominator> ]
|
||||
*
|
||||
* Integer form
|
||||
* - Single integer value
|
||||
*
|
||||
* Double form
|
||||
* - Single double value
|
||||
*
|
||||
* String form
|
||||
* 123.456 - a simple double
|
||||
* 123/456 - a string fraction
|
||||
* 123.'456' - a double with repeating decimal places
|
||||
* 123.(456) - synonym
|
||||
* 123.45'6' - a double with repeating last place
|
||||
* 123.45(6) - synonym
|
||||
*
|
||||
* Example:
|
||||
*
|
||||
* var f = new Fraction("9.4'31'");
|
||||
* f.mul([-4, 3]).div(4.9);
|
||||
*
|
||||
*/
|
||||
|
||||
(function(root) {
|
||||
|
||||
"use strict";
|
||||
|
||||
// Maximum search depth for cyclic rational numbers. 2000 should be more than enough.
|
||||
// Example: 1/7 = 0.(142857) has 6 repeating decimal places.
|
||||
// If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits
|
||||
var MAX_CYCLE_LEN = 2000;
|
||||
|
||||
// Parsed data to avoid calling "new" all the time
|
||||
var P = {
|
||||
"s": 1,
|
||||
"n": 0,
|
||||
"d": 1
|
||||
};
|
||||
|
||||
function assign(n, s) {
|
||||
|
||||
if (isNaN(n = parseInt(n, 10))) {
|
||||
throw InvalidParameter();
|
||||
}
|
||||
return n * s;
|
||||
}
|
||||
|
||||
// Creates a new Fraction internally without the need of the bulky constructor
|
||||
function newFraction(n, d) {
|
||||
|
||||
if (d === 0) {
|
||||
throw DivisionByZero();
|
||||
}
|
||||
|
||||
var f = Object.create(Fraction.prototype);
|
||||
f["s"] = n < 0 ? -1 : 1;
|
||||
|
||||
n = n < 0 ? -n : n;
|
||||
|
||||
var a = gcd(n, d);
|
||||
|
||||
f["n"] = n / a;
|
||||
f["d"] = d / a;
|
||||
return f;
|
||||
}
|
||||
|
||||
function factorize(num) {
|
||||
|
||||
var factors = {};
|
||||
|
||||
var n = num;
|
||||
var i = 2;
|
||||
var s = 4;
|
||||
|
||||
while (s <= n) {
|
||||
|
||||
while (n % i === 0) {
|
||||
n/= i;
|
||||
factors[i] = (factors[i] || 0) + 1;
|
||||
}
|
||||
s+= 1 + 2 * i++;
|
||||
}
|
||||
|
||||
if (n !== num) {
|
||||
if (n > 1)
|
||||
factors[n] = (factors[n] || 0) + 1;
|
||||
} else {
|
||||
factors[num] = (factors[num] || 0) + 1;
|
||||
}
|
||||
return factors;
|
||||
}
|
||||
|
||||
var parse = function(p1, p2) {
|
||||
|
||||
var n = 0, d = 1, s = 1;
|
||||
var v = 0, w = 0, x = 0, y = 1, z = 1;
|
||||
|
||||
var A = 0, B = 1;
|
||||
var C = 1, D = 1;
|
||||
|
||||
var N = 10000000;
|
||||
var M;
|
||||
|
||||
if (p1 === undefined || p1 === null) {
|
||||
/* void */
|
||||
} else if (p2 !== undefined) {
|
||||
n = p1;
|
||||
d = p2;
|
||||
s = n * d;
|
||||
|
||||
if (n % 1 !== 0 || d % 1 !== 0) {
|
||||
throw NonIntegerParameter();
|
||||
}
|
||||
|
||||
} else
|
||||
switch (typeof p1) {
|
||||
|
||||
case "object":
|
||||
{
|
||||
if ("d" in p1 && "n" in p1) {
|
||||
n = p1["n"];
|
||||
d = p1["d"];
|
||||
if ("s" in p1)
|
||||
n*= p1["s"];
|
||||
} else if (0 in p1) {
|
||||
n = p1[0];
|
||||
if (1 in p1)
|
||||
d = p1[1];
|
||||
} else {
|
||||
throw InvalidParameter();
|
||||
}
|
||||
s = n * d;
|
||||
break;
|
||||
}
|
||||
case "number":
|
||||
{
|
||||
if (p1 < 0) {
|
||||
s = p1;
|
||||
p1 = -p1;
|
||||
}
|
||||
|
||||
if (p1 % 1 === 0) {
|
||||
n = p1;
|
||||
} else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow
|
||||
|
||||
if (p1 >= 1) {
|
||||
z = Math.pow(10, Math.floor(1 + Math.log(p1) / Math.LN10));
|
||||
p1/= z;
|
||||
}
|
||||
|
||||
// Using Farey Sequences
|
||||
// http://www.johndcook.com/blog/2010/10/20/best-rational-approximation/
|
||||
|
||||
while (B <= N && D <= N) {
|
||||
M = (A + C) / (B + D);
|
||||
|
||||
if (p1 === M) {
|
||||
if (B + D <= N) {
|
||||
n = A + C;
|
||||
d = B + D;
|
||||
} else if (D > B) {
|
||||
n = C;
|
||||
d = D;
|
||||
} else {
|
||||
n = A;
|
||||
d = B;
|
||||
}
|
||||
break;
|
||||
|
||||
} else {
|
||||
|
||||
if (p1 > M) {
|
||||
A+= C;
|
||||
B+= D;
|
||||
} else {
|
||||
C+= A;
|
||||
D+= B;
|
||||
}
|
||||
|
||||
if (B > N) {
|
||||
n = C;
|
||||
d = D;
|
||||
} else {
|
||||
n = A;
|
||||
d = B;
|
||||
}
|
||||
}
|
||||
}
|
||||
n*= z;
|
||||
} else if (isNaN(p1) || isNaN(p2)) {
|
||||
d = n = NaN;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case "string":
|
||||
{
|
||||
B = p1.match(/\d+|./g);
|
||||
|
||||
if (B === null)
|
||||
throw InvalidParameter();
|
||||
|
||||
if (B[A] === '-') {// Check for minus sign at the beginning
|
||||
s = -1;
|
||||
A++;
|
||||
} else if (B[A] === '+') {// Check for plus sign at the beginning
|
||||
A++;
|
||||
}
|
||||
|
||||
if (B.length === A + 1) { // Check if it's just a simple number "1234"
|
||||
w = assign(B[A++], s);
|
||||
} else if (B[A + 1] === '.' || B[A] === '.') { // Check if it's a decimal number
|
||||
|
||||
if (B[A] !== '.') { // Handle 0.5 and .5
|
||||
v = assign(B[A++], s);
|
||||
}
|
||||
A++;
|
||||
|
||||
// Check for decimal places
|
||||
if (A + 1 === B.length || B[A + 1] === '(' && B[A + 3] === ')' || B[A + 1] === "'" && B[A + 3] === "'") {
|
||||
w = assign(B[A], s);
|
||||
y = Math.pow(10, B[A].length);
|
||||
A++;
|
||||
}
|
||||
|
||||
// Check for repeating places
|
||||
if (B[A] === '(' && B[A + 2] === ')' || B[A] === "'" && B[A + 2] === "'") {
|
||||
x = assign(B[A + 1], s);
|
||||
z = Math.pow(10, B[A + 1].length) - 1;
|
||||
A+= 3;
|
||||
}
|
||||
|
||||
} else if (B[A + 1] === '/' || B[A + 1] === ':') { // Check for a simple fraction "123/456" or "123:456"
|
||||
w = assign(B[A], s);
|
||||
y = assign(B[A + 2], 1);
|
||||
A+= 3;
|
||||
} else if (B[A + 3] === '/' && B[A + 1] === ' ') { // Check for a complex fraction "123 1/2"
|
||||
v = assign(B[A], s);
|
||||
w = assign(B[A + 2], s);
|
||||
y = assign(B[A + 4], 1);
|
||||
A+= 5;
|
||||
}
|
||||
|
||||
if (B.length <= A) { // Check for more tokens on the stack
|
||||
d = y * z;
|
||||
s = /* void */
|
||||
n = x + d * v + z * w;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Fall through on error */
|
||||
}
|
||||
default:
|
||||
throw InvalidParameter();
|
||||
}
|
||||
|
||||
if (d === 0) {
|
||||
throw DivisionByZero();
|
||||
}
|
||||
|
||||
P["s"] = s < 0 ? -1 : 1;
|
||||
P["n"] = Math.abs(n);
|
||||
P["d"] = Math.abs(d);
|
||||
};
|
||||
|
||||
function modpow(b, e, m) {
|
||||
|
||||
var r = 1;
|
||||
for (; e > 0; b = (b * b) % m, e >>= 1) {
|
||||
|
||||
if (e & 1) {
|
||||
r = (r * b) % m;
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
function cycleLen(n, d) {
|
||||
|
||||
for (; d % 2 === 0;
|
||||
d/= 2) {
|
||||
}
|
||||
|
||||
for (; d % 5 === 0;
|
||||
d/= 5) {
|
||||
}
|
||||
|
||||
if (d === 1) // Catch non-cyclic numbers
|
||||
return 0;
|
||||
|
||||
// If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem:
|
||||
// 10^(d-1) % d == 1
|
||||
// However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone,
|
||||
// as we want to translate the numbers to strings.
|
||||
|
||||
var rem = 10 % d;
|
||||
var t = 1;
|
||||
|
||||
for (; rem !== 1; t++) {
|
||||
rem = rem * 10 % d;
|
||||
|
||||
if (t > MAX_CYCLE_LEN)
|
||||
return 0; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1`
|
||||
}
|
||||
return t;
|
||||
}
|
||||
|
||||
|
||||
function cycleStart(n, d, len) {
|
||||
|
||||
var rem1 = 1;
|
||||
var rem2 = modpow(10, len, d);
|
||||
|
||||
for (var t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE)
|
||||
// Solve 10^s == 10^(s+t) (mod d)
|
||||
|
||||
if (rem1 === rem2)
|
||||
return t;
|
||||
|
||||
rem1 = rem1 * 10 % d;
|
||||
rem2 = rem2 * 10 % d;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
function gcd(a, b) {
|
||||
|
||||
if (!a)
|
||||
return b;
|
||||
if (!b)
|
||||
return a;
|
||||
|
||||
while (1) {
|
||||
a%= b;
|
||||
if (!a)
|
||||
return b;
|
||||
b%= a;
|
||||
if (!b)
|
||||
return a;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Module constructor
|
||||
*
|
||||
* @constructor
|
||||
* @param {number|Fraction=} a
|
||||
* @param {number=} b
|
||||
*/
|
||||
function Fraction(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
|
||||
if (this instanceof Fraction) {
|
||||
a = gcd(P["d"], P["n"]); // Abuse variable a
|
||||
this["s"] = P["s"];
|
||||
this["n"] = P["n"] / a;
|
||||
this["d"] = P["d"] / a;
|
||||
} else {
|
||||
return newFraction(P['s'] * P['n'], P['d']);
|
||||
}
|
||||
}
|
||||
|
||||
var DivisionByZero = function() { return new Error("Division by Zero"); };
|
||||
var InvalidParameter = function() { return new Error("Invalid argument"); };
|
||||
var NonIntegerParameter = function() { return new Error("Parameters must be integer"); };
|
||||
|
||||
Fraction.prototype = {
|
||||
|
||||
"s": 1,
|
||||
"n": 0,
|
||||
"d": 1,
|
||||
|
||||
/**
|
||||
* Calculates the absolute value
|
||||
*
|
||||
* Ex: new Fraction(-4).abs() => 4
|
||||
**/
|
||||
"abs": function() {
|
||||
|
||||
return newFraction(this["n"], this["d"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Inverts the sign of the current fraction
|
||||
*
|
||||
* Ex: new Fraction(-4).neg() => 4
|
||||
**/
|
||||
"neg": function() {
|
||||
|
||||
return newFraction(-this["s"] * this["n"], this["d"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Adds two rational numbers
|
||||
*
|
||||
* Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30
|
||||
**/
|
||||
"add": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return newFraction(
|
||||
this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"],
|
||||
this["d"] * P["d"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Subtracts two rational numbers
|
||||
*
|
||||
* Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30
|
||||
**/
|
||||
"sub": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return newFraction(
|
||||
this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"],
|
||||
this["d"] * P["d"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Multiplies two rational numbers
|
||||
*
|
||||
* Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111
|
||||
**/
|
||||
"mul": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return newFraction(
|
||||
this["s"] * P["s"] * this["n"] * P["n"],
|
||||
this["d"] * P["d"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Divides two rational numbers
|
||||
*
|
||||
* Ex: new Fraction("-17.(345)").inverse().div(3)
|
||||
**/
|
||||
"div": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return newFraction(
|
||||
this["s"] * P["s"] * this["n"] * P["d"],
|
||||
this["d"] * P["n"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Clones the actual object
|
||||
*
|
||||
* Ex: new Fraction("-17.(345)").clone()
|
||||
**/
|
||||
"clone": function() {
|
||||
return newFraction(this['s'] * this['n'], this['d']);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the modulo of two rational numbers - a more precise fmod
|
||||
*
|
||||
* Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6)
|
||||
**/
|
||||
"mod": function(a, b) {
|
||||
|
||||
if (isNaN(this['n']) || isNaN(this['d'])) {
|
||||
return new Fraction(NaN);
|
||||
}
|
||||
|
||||
if (a === undefined) {
|
||||
return newFraction(this["s"] * this["n"] % this["d"], 1);
|
||||
}
|
||||
|
||||
parse(a, b);
|
||||
if (0 === P["n"] && 0 === this["d"]) {
|
||||
throw DivisionByZero();
|
||||
}
|
||||
|
||||
/*
|
||||
* First silly attempt, kinda slow
|
||||
*
|
||||
return that["sub"]({
|
||||
"n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)),
|
||||
"d": num["d"],
|
||||
"s": this["s"]
|
||||
});*/
|
||||
|
||||
/*
|
||||
* New attempt: a1 / b1 = a2 / b2 * q + r
|
||||
* => b2 * a1 = a2 * b1 * q + b1 * b2 * r
|
||||
* => (b2 * a1 % a2 * b1) / (b1 * b2)
|
||||
*/
|
||||
return newFraction(
|
||||
this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]),
|
||||
P["d"] * this["d"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the fractional gcd of two rational numbers
|
||||
*
|
||||
* Ex: new Fraction(5,8).gcd(3,7) => 1/56
|
||||
*/
|
||||
"gcd": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
|
||||
// gcd(a / b, c / d) = gcd(a, c) / lcm(b, d)
|
||||
|
||||
return newFraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the fractional lcm of two rational numbers
|
||||
*
|
||||
* Ex: new Fraction(5,8).lcm(3,7) => 15
|
||||
*/
|
||||
"lcm": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
|
||||
// lcm(a / b, c / d) = lcm(a, c) / gcd(b, d)
|
||||
|
||||
if (P["n"] === 0 && this["n"] === 0) {
|
||||
return newFraction(0, 1);
|
||||
}
|
||||
return newFraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]));
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the ceil of a rational number
|
||||
*
|
||||
* Ex: new Fraction('4.(3)').ceil() => (5 / 1)
|
||||
**/
|
||||
"ceil": function(places) {
|
||||
|
||||
places = Math.pow(10, places || 0);
|
||||
|
||||
if (isNaN(this["n"]) || isNaN(this["d"])) {
|
||||
return new Fraction(NaN);
|
||||
}
|
||||
return newFraction(Math.ceil(places * this["s"] * this["n"] / this["d"]), places);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the floor of a rational number
|
||||
*
|
||||
* Ex: new Fraction('4.(3)').floor() => (4 / 1)
|
||||
**/
|
||||
"floor": function(places) {
|
||||
|
||||
places = Math.pow(10, places || 0);
|
||||
|
||||
if (isNaN(this["n"]) || isNaN(this["d"])) {
|
||||
return new Fraction(NaN);
|
||||
}
|
||||
return newFraction(Math.floor(places * this["s"] * this["n"] / this["d"]), places);
|
||||
},
|
||||
|
||||
/**
|
||||
* Rounds a rational numbers
|
||||
*
|
||||
* Ex: new Fraction('4.(3)').round() => (4 / 1)
|
||||
**/
|
||||
"round": function(places) {
|
||||
|
||||
places = Math.pow(10, places || 0);
|
||||
|
||||
if (isNaN(this["n"]) || isNaN(this["d"])) {
|
||||
return new Fraction(NaN);
|
||||
}
|
||||
return newFraction(Math.round(places * this["s"] * this["n"] / this["d"]), places);
|
||||
},
|
||||
|
||||
/**
|
||||
* Rounds a rational number to a multiple of another rational number
|
||||
*
|
||||
* Ex: new Fraction('0.9').roundTo("1/8") => 7 / 8
|
||||
**/
|
||||
"roundTo": function(a, b) {
|
||||
|
||||
/*
|
||||
k * x/y ≤ a/b < (k+1) * x/y
|
||||
⇔ k ≤ a/b / (x/y) < (k+1)
|
||||
⇔ k = floor(a/b * y/x)
|
||||
*/
|
||||
|
||||
parse(a, b);
|
||||
|
||||
return newFraction(this['s'] * Math.round(this['n'] * P['d'] / (this['d'] * P['n'])) * P['n'], P['d']);
|
||||
},
|
||||
|
||||
/**
|
||||
* Gets the inverse of the fraction, means numerator and denominator are exchanged
|
||||
*
|
||||
* Ex: new Fraction([-3, 4]).inverse() => -4 / 3
|
||||
**/
|
||||
"inverse": function() {
|
||||
|
||||
return newFraction(this["s"] * this["d"], this["n"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the fraction to some rational exponent, if possible
|
||||
*
|
||||
* Ex: new Fraction(-1,2).pow(-3) => -8
|
||||
*/
|
||||
"pow": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
|
||||
// Trivial case when exp is an integer
|
||||
|
||||
if (P['d'] === 1) {
|
||||
|
||||
if (P['s'] < 0) {
|
||||
return newFraction(Math.pow(this['s'] * this["d"], P['n']), Math.pow(this["n"], P['n']));
|
||||
} else {
|
||||
return newFraction(Math.pow(this['s'] * this["n"], P['n']), Math.pow(this["d"], P['n']));
|
||||
}
|
||||
}
|
||||
|
||||
// Negative roots become complex
|
||||
// (-a/b)^(c/d) = x
|
||||
// <=> (-1)^(c/d) * (a/b)^(c/d) = x
|
||||
// <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x # rotate 1 by 180°
|
||||
// <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x # DeMoivre's formula in Q ( https://proofwiki.org/wiki/De_Moivre%27s_Formula/Rational_Index )
|
||||
// From which follows that only for c=0 the root is non-complex. c/d is a reduced fraction, so that sin(c/dpi)=0 occurs for d=1, which is handled by our trivial case.
|
||||
if (this['s'] < 0) return null;
|
||||
|
||||
// Now prime factor n and d
|
||||
var N = factorize(this['n']);
|
||||
var D = factorize(this['d']);
|
||||
|
||||
// Exponentiate and take root for n and d individually
|
||||
var n = 1;
|
||||
var d = 1;
|
||||
for (var k in N) {
|
||||
if (k === '1') continue;
|
||||
if (k === '0') {
|
||||
n = 0;
|
||||
break;
|
||||
}
|
||||
N[k]*= P['n'];
|
||||
|
||||
if (N[k] % P['d'] === 0) {
|
||||
N[k]/= P['d'];
|
||||
} else return null;
|
||||
n*= Math.pow(k, N[k]);
|
||||
}
|
||||
|
||||
for (var k in D) {
|
||||
if (k === '1') continue;
|
||||
D[k]*= P['n'];
|
||||
|
||||
if (D[k] % P['d'] === 0) {
|
||||
D[k]/= P['d'];
|
||||
} else return null;
|
||||
d*= Math.pow(k, D[k]);
|
||||
}
|
||||
|
||||
if (P['s'] < 0) {
|
||||
return newFraction(d, n);
|
||||
}
|
||||
return newFraction(n, d);
|
||||
},
|
||||
|
||||
/**
|
||||
* Check if two rational numbers are the same
|
||||
*
|
||||
* Ex: new Fraction(19.6).equals([98, 5]);
|
||||
**/
|
||||
"equals": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0
|
||||
},
|
||||
|
||||
/**
|
||||
* Check if two rational numbers are the same
|
||||
*
|
||||
* Ex: new Fraction(19.6).equals([98, 5]);
|
||||
**/
|
||||
"compare": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
var t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]);
|
||||
return (0 < t) - (t < 0);
|
||||
},
|
||||
|
||||
"simplify": function(eps) {
|
||||
|
||||
if (isNaN(this['n']) || isNaN(this['d'])) {
|
||||
return this;
|
||||
}
|
||||
|
||||
eps = eps || 0.001;
|
||||
|
||||
var thisABS = this['abs']();
|
||||
var cont = thisABS['toContinued']();
|
||||
|
||||
for (var i = 1; i < cont.length; i++) {
|
||||
|
||||
var s = newFraction(cont[i - 1], 1);
|
||||
for (var k = i - 2; k >= 0; k--) {
|
||||
s = s['inverse']()['add'](cont[k]);
|
||||
}
|
||||
|
||||
if (Math.abs(s['sub'](thisABS).valueOf()) < eps) {
|
||||
return s['mul'](this['s']);
|
||||
}
|
||||
}
|
||||
return this;
|
||||
},
|
||||
|
||||
/**
|
||||
* Check if two rational numbers are divisible
|
||||
*
|
||||
* Ex: new Fraction(19.6).divisible(1.5);
|
||||
*/
|
||||
"divisible": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"])));
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns a decimal representation of the fraction
|
||||
*
|
||||
* Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183
|
||||
**/
|
||||
'valueOf': function() {
|
||||
|
||||
return this["s"] * this["n"] / this["d"];
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns a string-fraction representation of a Fraction object
|
||||
*
|
||||
* Ex: new Fraction("1.'3'").toFraction(true) => "4 1/3"
|
||||
**/
|
||||
'toFraction': function(excludeWhole) {
|
||||
|
||||
var whole, str = "";
|
||||
var n = this["n"];
|
||||
var d = this["d"];
|
||||
if (this["s"] < 0) {
|
||||
str+= '-';
|
||||
}
|
||||
|
||||
if (d === 1) {
|
||||
str+= n;
|
||||
} else {
|
||||
|
||||
if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
|
||||
str+= whole;
|
||||
str+= " ";
|
||||
n%= d;
|
||||
}
|
||||
|
||||
str+= n;
|
||||
str+= '/';
|
||||
str+= d;
|
||||
}
|
||||
return str;
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns a latex representation of a Fraction object
|
||||
*
|
||||
* Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}"
|
||||
**/
|
||||
'toLatex': function(excludeWhole) {
|
||||
|
||||
var whole, str = "";
|
||||
var n = this["n"];
|
||||
var d = this["d"];
|
||||
if (this["s"] < 0) {
|
||||
str+= '-';
|
||||
}
|
||||
|
||||
if (d === 1) {
|
||||
str+= n;
|
||||
} else {
|
||||
|
||||
if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
|
||||
str+= whole;
|
||||
n%= d;
|
||||
}
|
||||
|
||||
str+= "\\frac{";
|
||||
str+= n;
|
||||
str+= '}{';
|
||||
str+= d;
|
||||
str+= '}';
|
||||
}
|
||||
return str;
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns an array of continued fraction elements
|
||||
*
|
||||
* Ex: new Fraction("7/8").toContinued() => [0,1,7]
|
||||
*/
|
||||
'toContinued': function() {
|
||||
|
||||
var t;
|
||||
var a = this['n'];
|
||||
var b = this['d'];
|
||||
var res = [];
|
||||
|
||||
if (isNaN(a) || isNaN(b)) {
|
||||
return res;
|
||||
}
|
||||
|
||||
do {
|
||||
res.push(Math.floor(a / b));
|
||||
t = a % b;
|
||||
a = b;
|
||||
b = t;
|
||||
} while (a !== 1);
|
||||
|
||||
return res;
|
||||
},
|
||||
|
||||
/**
|
||||
* Creates a string representation of a fraction with all digits
|
||||
*
|
||||
* Ex: new Fraction("100.'91823'").toString() => "100.(91823)"
|
||||
**/
|
||||
'toString': function(dec) {
|
||||
|
||||
var N = this["n"];
|
||||
var D = this["d"];
|
||||
|
||||
if (isNaN(N) || isNaN(D)) {
|
||||
return "NaN";
|
||||
}
|
||||
|
||||
dec = dec || 15; // 15 = decimal places when no repetation
|
||||
|
||||
var cycLen = cycleLen(N, D); // Cycle length
|
||||
var cycOff = cycleStart(N, D, cycLen); // Cycle start
|
||||
|
||||
var str = this['s'] < 0 ? "-" : "";
|
||||
|
||||
str+= N / D | 0;
|
||||
|
||||
N%= D;
|
||||
N*= 10;
|
||||
|
||||
if (N)
|
||||
str+= ".";
|
||||
|
||||
if (cycLen) {
|
||||
|
||||
for (var i = cycOff; i--;) {
|
||||
str+= N / D | 0;
|
||||
N%= D;
|
||||
N*= 10;
|
||||
}
|
||||
str+= "(";
|
||||
for (var i = cycLen; i--;) {
|
||||
str+= N / D | 0;
|
||||
N%= D;
|
||||
N*= 10;
|
||||
}
|
||||
str+= ")";
|
||||
} else {
|
||||
for (var i = dec; N && i--;) {
|
||||
str+= N / D | 0;
|
||||
N%= D;
|
||||
N*= 10;
|
||||
}
|
||||
}
|
||||
return str;
|
||||
}
|
||||
};
|
||||
|
||||
if (typeof exports === "object") {
|
||||
Object.defineProperty(exports, "__esModule", { 'value': true });
|
||||
exports['default'] = Fraction;
|
||||
module['exports'] = Fraction;
|
||||
} else {
|
||||
root['Fraction'] = Fraction;
|
||||
}
|
||||
|
||||
})(this);
|
60
app_vue/node_modules/fraction.js/fraction.d.ts
generated
vendored
Normal file
60
app_vue/node_modules/fraction.js/fraction.d.ts
generated
vendored
Normal file
@ -0,0 +1,60 @@
|
||||
declare module 'Fraction';
|
||||
|
||||
export interface NumeratorDenominator {
|
||||
n: number;
|
||||
d: number;
|
||||
}
|
||||
|
||||
type FractionConstructor = {
|
||||
(fraction: Fraction): Fraction;
|
||||
(num: number | string): Fraction;
|
||||
(numerator: number, denominator: number): Fraction;
|
||||
(numbers: [number | string, number | string]): Fraction;
|
||||
(fraction: NumeratorDenominator): Fraction;
|
||||
(firstValue: Fraction | number | string | [number | string, number | string] | NumeratorDenominator, secondValue?: number): Fraction;
|
||||
};
|
||||
|
||||
export default class Fraction {
|
||||
constructor (fraction: Fraction);
|
||||
constructor (num: number | string);
|
||||
constructor (numerator: number, denominator: number);
|
||||
constructor (numbers: [number | string, number | string]);
|
||||
constructor (fraction: NumeratorDenominator);
|
||||
constructor (firstValue: Fraction | number | string | [number | string, number | string] | NumeratorDenominator, secondValue?: number);
|
||||
|
||||
s: number;
|
||||
n: number;
|
||||
d: number;
|
||||
|
||||
abs(): Fraction;
|
||||
neg(): Fraction;
|
||||
|
||||
add: FractionConstructor;
|
||||
sub: FractionConstructor;
|
||||
mul: FractionConstructor;
|
||||
div: FractionConstructor;
|
||||
pow: FractionConstructor;
|
||||
gcd: FractionConstructor;
|
||||
lcm: FractionConstructor;
|
||||
|
||||
mod(n?: number | string | Fraction): Fraction;
|
||||
|
||||
ceil(places?: number): Fraction;
|
||||
floor(places?: number): Fraction;
|
||||
round(places?: number): Fraction;
|
||||
|
||||
inverse(): Fraction;
|
||||
|
||||
simplify(eps?: number): Fraction;
|
||||
|
||||
equals(n: number | string | Fraction): boolean;
|
||||
compare(n: number | string | Fraction): number;
|
||||
divisible(n: number | string | Fraction): boolean;
|
||||
|
||||
valueOf(): number;
|
||||
toString(decimalPlaces?: number): string;
|
||||
toLatex(excludeWhole?: boolean): string;
|
||||
toFraction(excludeWhole?: boolean): string;
|
||||
toContinued(): number[];
|
||||
clone(): Fraction;
|
||||
}
|
891
app_vue/node_modules/fraction.js/fraction.js
generated
vendored
Normal file
891
app_vue/node_modules/fraction.js/fraction.js
generated
vendored
Normal file
@ -0,0 +1,891 @@
|
||||
/**
|
||||
* @license Fraction.js v4.3.7 31/08/2023
|
||||
* https://www.xarg.org/2014/03/rational-numbers-in-javascript/
|
||||
*
|
||||
* Copyright (c) 2023, Robert Eisele (robert@raw.org)
|
||||
* Dual licensed under the MIT or GPL Version 2 licenses.
|
||||
**/
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* This class offers the possibility to calculate fractions.
|
||||
* You can pass a fraction in different formats. Either as array, as double, as string or as an integer.
|
||||
*
|
||||
* Array/Object form
|
||||
* [ 0 => <numerator>, 1 => <denominator> ]
|
||||
* [ n => <numerator>, d => <denominator> ]
|
||||
*
|
||||
* Integer form
|
||||
* - Single integer value
|
||||
*
|
||||
* Double form
|
||||
* - Single double value
|
||||
*
|
||||
* String form
|
||||
* 123.456 - a simple double
|
||||
* 123/456 - a string fraction
|
||||
* 123.'456' - a double with repeating decimal places
|
||||
* 123.(456) - synonym
|
||||
* 123.45'6' - a double with repeating last place
|
||||
* 123.45(6) - synonym
|
||||
*
|
||||
* Example:
|
||||
*
|
||||
* var f = new Fraction("9.4'31'");
|
||||
* f.mul([-4, 3]).div(4.9);
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
// Maximum search depth for cyclic rational numbers. 2000 should be more than enough.
|
||||
// Example: 1/7 = 0.(142857) has 6 repeating decimal places.
|
||||
// If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits
|
||||
var MAX_CYCLE_LEN = 2000;
|
||||
|
||||
// Parsed data to avoid calling "new" all the time
|
||||
var P = {
|
||||
"s": 1,
|
||||
"n": 0,
|
||||
"d": 1
|
||||
};
|
||||
|
||||
function assign(n, s) {
|
||||
|
||||
if (isNaN(n = parseInt(n, 10))) {
|
||||
throw InvalidParameter();
|
||||
}
|
||||
return n * s;
|
||||
}
|
||||
|
||||
// Creates a new Fraction internally without the need of the bulky constructor
|
||||
function newFraction(n, d) {
|
||||
|
||||
if (d === 0) {
|
||||
throw DivisionByZero();
|
||||
}
|
||||
|
||||
var f = Object.create(Fraction.prototype);
|
||||
f["s"] = n < 0 ? -1 : 1;
|
||||
|
||||
n = n < 0 ? -n : n;
|
||||
|
||||
var a = gcd(n, d);
|
||||
|
||||
f["n"] = n / a;
|
||||
f["d"] = d / a;
|
||||
return f;
|
||||
}
|
||||
|
||||
function factorize(num) {
|
||||
|
||||
var factors = {};
|
||||
|
||||
var n = num;
|
||||
var i = 2;
|
||||
var s = 4;
|
||||
|
||||
while (s <= n) {
|
||||
|
||||
while (n % i === 0) {
|
||||
n/= i;
|
||||
factors[i] = (factors[i] || 0) + 1;
|
||||
}
|
||||
s+= 1 + 2 * i++;
|
||||
}
|
||||
|
||||
if (n !== num) {
|
||||
if (n > 1)
|
||||
factors[n] = (factors[n] || 0) + 1;
|
||||
} else {
|
||||
factors[num] = (factors[num] || 0) + 1;
|
||||
}
|
||||
return factors;
|
||||
}
|
||||
|
||||
var parse = function(p1, p2) {
|
||||
|
||||
var n = 0, d = 1, s = 1;
|
||||
var v = 0, w = 0, x = 0, y = 1, z = 1;
|
||||
|
||||
var A = 0, B = 1;
|
||||
var C = 1, D = 1;
|
||||
|
||||
var N = 10000000;
|
||||
var M;
|
||||
|
||||
if (p1 === undefined || p1 === null) {
|
||||
/* void */
|
||||
} else if (p2 !== undefined) {
|
||||
n = p1;
|
||||
d = p2;
|
||||
s = n * d;
|
||||
|
||||
if (n % 1 !== 0 || d % 1 !== 0) {
|
||||
throw NonIntegerParameter();
|
||||
}
|
||||
|
||||
} else
|
||||
switch (typeof p1) {
|
||||
|
||||
case "object":
|
||||
{
|
||||
if ("d" in p1 && "n" in p1) {
|
||||
n = p1["n"];
|
||||
d = p1["d"];
|
||||
if ("s" in p1)
|
||||
n*= p1["s"];
|
||||
} else if (0 in p1) {
|
||||
n = p1[0];
|
||||
if (1 in p1)
|
||||
d = p1[1];
|
||||
} else {
|
||||
throw InvalidParameter();
|
||||
}
|
||||
s = n * d;
|
||||
break;
|
||||
}
|
||||
case "number":
|
||||
{
|
||||
if (p1 < 0) {
|
||||
s = p1;
|
||||
p1 = -p1;
|
||||
}
|
||||
|
||||
if (p1 % 1 === 0) {
|
||||
n = p1;
|
||||
} else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow
|
||||
|
||||
if (p1 >= 1) {
|
||||
z = Math.pow(10, Math.floor(1 + Math.log(p1) / Math.LN10));
|
||||
p1/= z;
|
||||
}
|
||||
|
||||
// Using Farey Sequences
|
||||
// http://www.johndcook.com/blog/2010/10/20/best-rational-approximation/
|
||||
|
||||
while (B <= N && D <= N) {
|
||||
M = (A + C) / (B + D);
|
||||
|
||||
if (p1 === M) {
|
||||
if (B + D <= N) {
|
||||
n = A + C;
|
||||
d = B + D;
|
||||
} else if (D > B) {
|
||||
n = C;
|
||||
d = D;
|
||||
} else {
|
||||
n = A;
|
||||
d = B;
|
||||
}
|
||||
break;
|
||||
|
||||
} else {
|
||||
|
||||
if (p1 > M) {
|
||||
A+= C;
|
||||
B+= D;
|
||||
} else {
|
||||
C+= A;
|
||||
D+= B;
|
||||
}
|
||||
|
||||
if (B > N) {
|
||||
n = C;
|
||||
d = D;
|
||||
} else {
|
||||
n = A;
|
||||
d = B;
|
||||
}
|
||||
}
|
||||
}
|
||||
n*= z;
|
||||
} else if (isNaN(p1) || isNaN(p2)) {
|
||||
d = n = NaN;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case "string":
|
||||
{
|
||||
B = p1.match(/\d+|./g);
|
||||
|
||||
if (B === null)
|
||||
throw InvalidParameter();
|
||||
|
||||
if (B[A] === '-') {// Check for minus sign at the beginning
|
||||
s = -1;
|
||||
A++;
|
||||
} else if (B[A] === '+') {// Check for plus sign at the beginning
|
||||
A++;
|
||||
}
|
||||
|
||||
if (B.length === A + 1) { // Check if it's just a simple number "1234"
|
||||
w = assign(B[A++], s);
|
||||
} else if (B[A + 1] === '.' || B[A] === '.') { // Check if it's a decimal number
|
||||
|
||||
if (B[A] !== '.') { // Handle 0.5 and .5
|
||||
v = assign(B[A++], s);
|
||||
}
|
||||
A++;
|
||||
|
||||
// Check for decimal places
|
||||
if (A + 1 === B.length || B[A + 1] === '(' && B[A + 3] === ')' || B[A + 1] === "'" && B[A + 3] === "'") {
|
||||
w = assign(B[A], s);
|
||||
y = Math.pow(10, B[A].length);
|
||||
A++;
|
||||
}
|
||||
|
||||
// Check for repeating places
|
||||
if (B[A] === '(' && B[A + 2] === ')' || B[A] === "'" && B[A + 2] === "'") {
|
||||
x = assign(B[A + 1], s);
|
||||
z = Math.pow(10, B[A + 1].length) - 1;
|
||||
A+= 3;
|
||||
}
|
||||
|
||||
} else if (B[A + 1] === '/' || B[A + 1] === ':') { // Check for a simple fraction "123/456" or "123:456"
|
||||
w = assign(B[A], s);
|
||||
y = assign(B[A + 2], 1);
|
||||
A+= 3;
|
||||
} else if (B[A + 3] === '/' && B[A + 1] === ' ') { // Check for a complex fraction "123 1/2"
|
||||
v = assign(B[A], s);
|
||||
w = assign(B[A + 2], s);
|
||||
y = assign(B[A + 4], 1);
|
||||
A+= 5;
|
||||
}
|
||||
|
||||
if (B.length <= A) { // Check for more tokens on the stack
|
||||
d = y * z;
|
||||
s = /* void */
|
||||
n = x + d * v + z * w;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Fall through on error */
|
||||
}
|
||||
default:
|
||||
throw InvalidParameter();
|
||||
}
|
||||
|
||||
if (d === 0) {
|
||||
throw DivisionByZero();
|
||||
}
|
||||
|
||||
P["s"] = s < 0 ? -1 : 1;
|
||||
P["n"] = Math.abs(n);
|
||||
P["d"] = Math.abs(d);
|
||||
};
|
||||
|
||||
function modpow(b, e, m) {
|
||||
|
||||
var r = 1;
|
||||
for (; e > 0; b = (b * b) % m, e >>= 1) {
|
||||
|
||||
if (e & 1) {
|
||||
r = (r * b) % m;
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
function cycleLen(n, d) {
|
||||
|
||||
for (; d % 2 === 0;
|
||||
d/= 2) {
|
||||
}
|
||||
|
||||
for (; d % 5 === 0;
|
||||
d/= 5) {
|
||||
}
|
||||
|
||||
if (d === 1) // Catch non-cyclic numbers
|
||||
return 0;
|
||||
|
||||
// If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem:
|
||||
// 10^(d-1) % d == 1
|
||||
// However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone,
|
||||
// as we want to translate the numbers to strings.
|
||||
|
||||
var rem = 10 % d;
|
||||
var t = 1;
|
||||
|
||||
for (; rem !== 1; t++) {
|
||||
rem = rem * 10 % d;
|
||||
|
||||
if (t > MAX_CYCLE_LEN)
|
||||
return 0; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1`
|
||||
}
|
||||
return t;
|
||||
}
|
||||
|
||||
|
||||
function cycleStart(n, d, len) {
|
||||
|
||||
var rem1 = 1;
|
||||
var rem2 = modpow(10, len, d);
|
||||
|
||||
for (var t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE)
|
||||
// Solve 10^s == 10^(s+t) (mod d)
|
||||
|
||||
if (rem1 === rem2)
|
||||
return t;
|
||||
|
||||
rem1 = rem1 * 10 % d;
|
||||
rem2 = rem2 * 10 % d;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
function gcd(a, b) {
|
||||
|
||||
if (!a)
|
||||
return b;
|
||||
if (!b)
|
||||
return a;
|
||||
|
||||
while (1) {
|
||||
a%= b;
|
||||
if (!a)
|
||||
return b;
|
||||
b%= a;
|
||||
if (!b)
|
||||
return a;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Module constructor
|
||||
*
|
||||
* @constructor
|
||||
* @param {number|Fraction=} a
|
||||
* @param {number=} b
|
||||
*/
|
||||
export default function Fraction(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
|
||||
if (this instanceof Fraction) {
|
||||
a = gcd(P["d"], P["n"]); // Abuse variable a
|
||||
this["s"] = P["s"];
|
||||
this["n"] = P["n"] / a;
|
||||
this["d"] = P["d"] / a;
|
||||
} else {
|
||||
return newFraction(P['s'] * P['n'], P['d']);
|
||||
}
|
||||
}
|
||||
|
||||
var DivisionByZero = function() { return new Error("Division by Zero"); };
|
||||
var InvalidParameter = function() { return new Error("Invalid argument"); };
|
||||
var NonIntegerParameter = function() { return new Error("Parameters must be integer"); };
|
||||
|
||||
Fraction.prototype = {
|
||||
|
||||
"s": 1,
|
||||
"n": 0,
|
||||
"d": 1,
|
||||
|
||||
/**
|
||||
* Calculates the absolute value
|
||||
*
|
||||
* Ex: new Fraction(-4).abs() => 4
|
||||
**/
|
||||
"abs": function() {
|
||||
|
||||
return newFraction(this["n"], this["d"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Inverts the sign of the current fraction
|
||||
*
|
||||
* Ex: new Fraction(-4).neg() => 4
|
||||
**/
|
||||
"neg": function() {
|
||||
|
||||
return newFraction(-this["s"] * this["n"], this["d"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Adds two rational numbers
|
||||
*
|
||||
* Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30
|
||||
**/
|
||||
"add": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return newFraction(
|
||||
this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"],
|
||||
this["d"] * P["d"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Subtracts two rational numbers
|
||||
*
|
||||
* Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30
|
||||
**/
|
||||
"sub": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return newFraction(
|
||||
this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"],
|
||||
this["d"] * P["d"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Multiplies two rational numbers
|
||||
*
|
||||
* Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111
|
||||
**/
|
||||
"mul": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return newFraction(
|
||||
this["s"] * P["s"] * this["n"] * P["n"],
|
||||
this["d"] * P["d"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Divides two rational numbers
|
||||
*
|
||||
* Ex: new Fraction("-17.(345)").inverse().div(3)
|
||||
**/
|
||||
"div": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return newFraction(
|
||||
this["s"] * P["s"] * this["n"] * P["d"],
|
||||
this["d"] * P["n"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Clones the actual object
|
||||
*
|
||||
* Ex: new Fraction("-17.(345)").clone()
|
||||
**/
|
||||
"clone": function() {
|
||||
return newFraction(this['s'] * this['n'], this['d']);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the modulo of two rational numbers - a more precise fmod
|
||||
*
|
||||
* Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6)
|
||||
**/
|
||||
"mod": function(a, b) {
|
||||
|
||||
if (isNaN(this['n']) || isNaN(this['d'])) {
|
||||
return new Fraction(NaN);
|
||||
}
|
||||
|
||||
if (a === undefined) {
|
||||
return newFraction(this["s"] * this["n"] % this["d"], 1);
|
||||
}
|
||||
|
||||
parse(a, b);
|
||||
if (0 === P["n"] && 0 === this["d"]) {
|
||||
throw DivisionByZero();
|
||||
}
|
||||
|
||||
/*
|
||||
* First silly attempt, kinda slow
|
||||
*
|
||||
return that["sub"]({
|
||||
"n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)),
|
||||
"d": num["d"],
|
||||
"s": this["s"]
|
||||
});*/
|
||||
|
||||
/*
|
||||
* New attempt: a1 / b1 = a2 / b2 * q + r
|
||||
* => b2 * a1 = a2 * b1 * q + b1 * b2 * r
|
||||
* => (b2 * a1 % a2 * b1) / (b1 * b2)
|
||||
*/
|
||||
return newFraction(
|
||||
this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]),
|
||||
P["d"] * this["d"]
|
||||
);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the fractional gcd of two rational numbers
|
||||
*
|
||||
* Ex: new Fraction(5,8).gcd(3,7) => 1/56
|
||||
*/
|
||||
"gcd": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
|
||||
// gcd(a / b, c / d) = gcd(a, c) / lcm(b, d)
|
||||
|
||||
return newFraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the fractional lcm of two rational numbers
|
||||
*
|
||||
* Ex: new Fraction(5,8).lcm(3,7) => 15
|
||||
*/
|
||||
"lcm": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
|
||||
// lcm(a / b, c / d) = lcm(a, c) / gcd(b, d)
|
||||
|
||||
if (P["n"] === 0 && this["n"] === 0) {
|
||||
return newFraction(0, 1);
|
||||
}
|
||||
return newFraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]));
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the ceil of a rational number
|
||||
*
|
||||
* Ex: new Fraction('4.(3)').ceil() => (5 / 1)
|
||||
**/
|
||||
"ceil": function(places) {
|
||||
|
||||
places = Math.pow(10, places || 0);
|
||||
|
||||
if (isNaN(this["n"]) || isNaN(this["d"])) {
|
||||
return new Fraction(NaN);
|
||||
}
|
||||
return newFraction(Math.ceil(places * this["s"] * this["n"] / this["d"]), places);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the floor of a rational number
|
||||
*
|
||||
* Ex: new Fraction('4.(3)').floor() => (4 / 1)
|
||||
**/
|
||||
"floor": function(places) {
|
||||
|
||||
places = Math.pow(10, places || 0);
|
||||
|
||||
if (isNaN(this["n"]) || isNaN(this["d"])) {
|
||||
return new Fraction(NaN);
|
||||
}
|
||||
return newFraction(Math.floor(places * this["s"] * this["n"] / this["d"]), places);
|
||||
},
|
||||
|
||||
/**
|
||||
* Rounds a rational number
|
||||
*
|
||||
* Ex: new Fraction('4.(3)').round() => (4 / 1)
|
||||
**/
|
||||
"round": function(places) {
|
||||
|
||||
places = Math.pow(10, places || 0);
|
||||
|
||||
if (isNaN(this["n"]) || isNaN(this["d"])) {
|
||||
return new Fraction(NaN);
|
||||
}
|
||||
return newFraction(Math.round(places * this["s"] * this["n"] / this["d"]), places);
|
||||
},
|
||||
|
||||
/**
|
||||
* Rounds a rational number to a multiple of another rational number
|
||||
*
|
||||
* Ex: new Fraction('0.9').roundTo("1/8") => 7 / 8
|
||||
**/
|
||||
"roundTo": function(a, b) {
|
||||
|
||||
/*
|
||||
k * x/y ≤ a/b < (k+1) * x/y
|
||||
⇔ k ≤ a/b / (x/y) < (k+1)
|
||||
⇔ k = floor(a/b * y/x)
|
||||
*/
|
||||
|
||||
parse(a, b);
|
||||
|
||||
return newFraction(this['s'] * Math.round(this['n'] * P['d'] / (this['d'] * P['n'])) * P['n'], P['d']);
|
||||
},
|
||||
|
||||
/**
|
||||
* Gets the inverse of the fraction, means numerator and denominator are exchanged
|
||||
*
|
||||
* Ex: new Fraction([-3, 4]).inverse() => -4 / 3
|
||||
**/
|
||||
"inverse": function() {
|
||||
|
||||
return newFraction(this["s"] * this["d"], this["n"]);
|
||||
},
|
||||
|
||||
/**
|
||||
* Calculates the fraction to some rational exponent, if possible
|
||||
*
|
||||
* Ex: new Fraction(-1,2).pow(-3) => -8
|
||||
*/
|
||||
"pow": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
|
||||
// Trivial case when exp is an integer
|
||||
|
||||
if (P['d'] === 1) {
|
||||
|
||||
if (P['s'] < 0) {
|
||||
return newFraction(Math.pow(this['s'] * this["d"], P['n']), Math.pow(this["n"], P['n']));
|
||||
} else {
|
||||
return newFraction(Math.pow(this['s'] * this["n"], P['n']), Math.pow(this["d"], P['n']));
|
||||
}
|
||||
}
|
||||
|
||||
// Negative roots become complex
|
||||
// (-a/b)^(c/d) = x
|
||||
// <=> (-1)^(c/d) * (a/b)^(c/d) = x
|
||||
// <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x # rotate 1 by 180°
|
||||
// <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x # DeMoivre's formula in Q ( https://proofwiki.org/wiki/De_Moivre%27s_Formula/Rational_Index )
|
||||
// From which follows that only for c=0 the root is non-complex. c/d is a reduced fraction, so that sin(c/dpi)=0 occurs for d=1, which is handled by our trivial case.
|
||||
if (this['s'] < 0) return null;
|
||||
|
||||
// Now prime factor n and d
|
||||
var N = factorize(this['n']);
|
||||
var D = factorize(this['d']);
|
||||
|
||||
// Exponentiate and take root for n and d individually
|
||||
var n = 1;
|
||||
var d = 1;
|
||||
for (var k in N) {
|
||||
if (k === '1') continue;
|
||||
if (k === '0') {
|
||||
n = 0;
|
||||
break;
|
||||
}
|
||||
N[k]*= P['n'];
|
||||
|
||||
if (N[k] % P['d'] === 0) {
|
||||
N[k]/= P['d'];
|
||||
} else return null;
|
||||
n*= Math.pow(k, N[k]);
|
||||
}
|
||||
|
||||
for (var k in D) {
|
||||
if (k === '1') continue;
|
||||
D[k]*= P['n'];
|
||||
|
||||
if (D[k] % P['d'] === 0) {
|
||||
D[k]/= P['d'];
|
||||
} else return null;
|
||||
d*= Math.pow(k, D[k]);
|
||||
}
|
||||
|
||||
if (P['s'] < 0) {
|
||||
return newFraction(d, n);
|
||||
}
|
||||
return newFraction(n, d);
|
||||
},
|
||||
|
||||
/**
|
||||
* Check if two rational numbers are the same
|
||||
*
|
||||
* Ex: new Fraction(19.6).equals([98, 5]);
|
||||
**/
|
||||
"equals": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0
|
||||
},
|
||||
|
||||
/**
|
||||
* Check if two rational numbers are the same
|
||||
*
|
||||
* Ex: new Fraction(19.6).equals([98, 5]);
|
||||
**/
|
||||
"compare": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
var t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]);
|
||||
return (0 < t) - (t < 0);
|
||||
},
|
||||
|
||||
"simplify": function(eps) {
|
||||
|
||||
if (isNaN(this['n']) || isNaN(this['d'])) {
|
||||
return this;
|
||||
}
|
||||
|
||||
eps = eps || 0.001;
|
||||
|
||||
var thisABS = this['abs']();
|
||||
var cont = thisABS['toContinued']();
|
||||
|
||||
for (var i = 1; i < cont.length; i++) {
|
||||
|
||||
var s = newFraction(cont[i - 1], 1);
|
||||
for (var k = i - 2; k >= 0; k--) {
|
||||
s = s['inverse']()['add'](cont[k]);
|
||||
}
|
||||
|
||||
if (Math.abs(s['sub'](thisABS).valueOf()) < eps) {
|
||||
return s['mul'](this['s']);
|
||||
}
|
||||
}
|
||||
return this;
|
||||
},
|
||||
|
||||
/**
|
||||
* Check if two rational numbers are divisible
|
||||
*
|
||||
* Ex: new Fraction(19.6).divisible(1.5);
|
||||
*/
|
||||
"divisible": function(a, b) {
|
||||
|
||||
parse(a, b);
|
||||
return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"])));
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns a decimal representation of the fraction
|
||||
*
|
||||
* Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183
|
||||
**/
|
||||
'valueOf': function() {
|
||||
|
||||
return this["s"] * this["n"] / this["d"];
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns a string-fraction representation of a Fraction object
|
||||
*
|
||||
* Ex: new Fraction("1.'3'").toFraction(true) => "4 1/3"
|
||||
**/
|
||||
'toFraction': function(excludeWhole) {
|
||||
|
||||
var whole, str = "";
|
||||
var n = this["n"];
|
||||
var d = this["d"];
|
||||
if (this["s"] < 0) {
|
||||
str+= '-';
|
||||
}
|
||||
|
||||
if (d === 1) {
|
||||
str+= n;
|
||||
} else {
|
||||
|
||||
if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
|
||||
str+= whole;
|
||||
str+= " ";
|
||||
n%= d;
|
||||
}
|
||||
|
||||
str+= n;
|
||||
str+= '/';
|
||||
str+= d;
|
||||
}
|
||||
return str;
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns a latex representation of a Fraction object
|
||||
*
|
||||
* Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}"
|
||||
**/
|
||||
'toLatex': function(excludeWhole) {
|
||||
|
||||
var whole, str = "";
|
||||
var n = this["n"];
|
||||
var d = this["d"];
|
||||
if (this["s"] < 0) {
|
||||
str+= '-';
|
||||
}
|
||||
|
||||
if (d === 1) {
|
||||
str+= n;
|
||||
} else {
|
||||
|
||||
if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
|
||||
str+= whole;
|
||||
n%= d;
|
||||
}
|
||||
|
||||
str+= "\\frac{";
|
||||
str+= n;
|
||||
str+= '}{';
|
||||
str+= d;
|
||||
str+= '}';
|
||||
}
|
||||
return str;
|
||||
},
|
||||
|
||||
/**
|
||||
* Returns an array of continued fraction elements
|
||||
*
|
||||
* Ex: new Fraction("7/8").toContinued() => [0,1,7]
|
||||
*/
|
||||
'toContinued': function() {
|
||||
|
||||
var t;
|
||||
var a = this['n'];
|
||||
var b = this['d'];
|
||||
var res = [];
|
||||
|
||||
if (isNaN(a) || isNaN(b)) {
|
||||
return res;
|
||||
}
|
||||
|
||||
do {
|
||||
res.push(Math.floor(a / b));
|
||||
t = a % b;
|
||||
a = b;
|
||||
b = t;
|
||||
} while (a !== 1);
|
||||
|
||||
return res;
|
||||
},
|
||||
|
||||
/**
|
||||
* Creates a string representation of a fraction with all digits
|
||||
*
|
||||
* Ex: new Fraction("100.'91823'").toString() => "100.(91823)"
|
||||
**/
|
||||
'toString': function(dec) {
|
||||
|
||||
var N = this["n"];
|
||||
var D = this["d"];
|
||||
|
||||
if (isNaN(N) || isNaN(D)) {
|
||||
return "NaN";
|
||||
}
|
||||
|
||||
dec = dec || 15; // 15 = decimal places when no repetation
|
||||
|
||||
var cycLen = cycleLen(N, D); // Cycle length
|
||||
var cycOff = cycleStart(N, D, cycLen); // Cycle start
|
||||
|
||||
var str = this['s'] < 0 ? "-" : "";
|
||||
|
||||
str+= N / D | 0;
|
||||
|
||||
N%= D;
|
||||
N*= 10;
|
||||
|
||||
if (N)
|
||||
str+= ".";
|
||||
|
||||
if (cycLen) {
|
||||
|
||||
for (var i = cycOff; i--;) {
|
||||
str+= N / D | 0;
|
||||
N%= D;
|
||||
N*= 10;
|
||||
}
|
||||
str+= "(";
|
||||
for (var i = cycLen; i--;) {
|
||||
str+= N / D | 0;
|
||||
N%= D;
|
||||
N*= 10;
|
||||
}
|
||||
str+= ")";
|
||||
} else {
|
||||
for (var i = dec; N && i--;) {
|
||||
str+= N / D | 0;
|
||||
N%= D;
|
||||
N*= 10;
|
||||
}
|
||||
}
|
||||
return str;
|
||||
}
|
||||
};
|
18
app_vue/node_modules/fraction.js/fraction.min.js
generated
vendored
Normal file
18
app_vue/node_modules/fraction.js/fraction.min.js
generated
vendored
Normal file
@ -0,0 +1,18 @@
|
||||
/*
|
||||
Fraction.js v4.3.7 31/08/2023
|
||||
https://www.xarg.org/2014/03/rational-numbers-in-javascript/
|
||||
|
||||
Copyright (c) 2023, Robert Eisele (robert@raw.org)
|
||||
Dual licensed under the MIT or GPL Version 2 licenses.
|
||||
*/
|
||||
(function(B){function x(){return Error("Invalid argument")}function z(){return Error("Division by Zero")}function n(a,c){var b=0,d=1,f=1,l=0,k=0,t=0,y=1,u=1,g=0,h=1,v=1,q=1;if(void 0!==a&&null!==a)if(void 0!==c){if(b=a,d=c,f=b*d,0!==b%1||0!==d%1)throw Error("Parameters must be integer");}else switch(typeof a){case "object":if("d"in a&&"n"in a)b=a.n,d=a.d,"s"in a&&(b*=a.s);else if(0 in a)b=a[0],1 in a&&(d=a[1]);else throw x();f=b*d;break;case "number":0>a&&(f=a,a=-a);if(0===a%1)b=a;else if(0<a){1<=
|
||||
a&&(u=Math.pow(10,Math.floor(1+Math.log(a)/Math.LN10)),a/=u);for(;1E7>=h&&1E7>=q;)if(b=(g+v)/(h+q),a===b){1E7>=h+q?(b=g+v,d=h+q):q>h?(b=v,d=q):(b=g,d=h);break}else a>b?(g+=v,h+=q):(v+=g,q+=h),1E7<h?(b=v,d=q):(b=g,d=h);b*=u}else if(isNaN(a)||isNaN(c))d=b=NaN;break;case "string":h=a.match(/\d+|./g);if(null===h)throw x();"-"===h[g]?(f=-1,g++):"+"===h[g]&&g++;if(h.length===g+1)k=r(h[g++],f);else if("."===h[g+1]||"."===h[g]){"."!==h[g]&&(l=r(h[g++],f));g++;if(g+1===h.length||"("===h[g+1]&&")"===h[g+3]||
|
||||
"'"===h[g+1]&&"'"===h[g+3])k=r(h[g],f),y=Math.pow(10,h[g].length),g++;if("("===h[g]&&")"===h[g+2]||"'"===h[g]&&"'"===h[g+2])t=r(h[g+1],f),u=Math.pow(10,h[g+1].length)-1,g+=3}else"/"===h[g+1]||":"===h[g+1]?(k=r(h[g],f),y=r(h[g+2],1),g+=3):"/"===h[g+3]&&" "===h[g+1]&&(l=r(h[g],f),k=r(h[g+2],f),y=r(h[g+4],1),g+=5);if(h.length<=g){d=y*u;f=b=t+d*l+u*k;break}default:throw x();}if(0===d)throw z();e.s=0>f?-1:1;e.n=Math.abs(b);e.d=Math.abs(d)}function r(a,c){if(isNaN(a=parseInt(a,10)))throw x();return a*c}
|
||||
function m(a,c){if(0===c)throw z();var b=Object.create(p.prototype);b.s=0>a?-1:1;a=0>a?-a:a;var d=w(a,c);b.n=a/d;b.d=c/d;return b}function A(a){for(var c={},b=a,d=2,f=4;f<=b;){for(;0===b%d;)b/=d,c[d]=(c[d]||0)+1;f+=1+2*d++}b!==a?1<b&&(c[b]=(c[b]||0)+1):c[a]=(c[a]||0)+1;return c}function w(a,c){if(!a)return c;if(!c)return a;for(;;){a%=c;if(!a)return c;c%=a;if(!c)return a}}function p(a,c){n(a,c);if(this instanceof p)a=w(e.d,e.n),this.s=e.s,this.n=e.n/a,this.d=e.d/a;else return m(e.s*e.n,e.d)}var e=
|
||||
{s:1,n:0,d:1};p.prototype={s:1,n:0,d:1,abs:function(){return m(this.n,this.d)},neg:function(){return m(-this.s*this.n,this.d)},add:function(a,c){n(a,c);return m(this.s*this.n*e.d+e.s*this.d*e.n,this.d*e.d)},sub:function(a,c){n(a,c);return m(this.s*this.n*e.d-e.s*this.d*e.n,this.d*e.d)},mul:function(a,c){n(a,c);return m(this.s*e.s*this.n*e.n,this.d*e.d)},div:function(a,c){n(a,c);return m(this.s*e.s*this.n*e.d,this.d*e.n)},clone:function(){return m(this.s*this.n,this.d)},mod:function(a,c){if(isNaN(this.n)||
|
||||
isNaN(this.d))return new p(NaN);if(void 0===a)return m(this.s*this.n%this.d,1);n(a,c);if(0===e.n&&0===this.d)throw z();return m(this.s*e.d*this.n%(e.n*this.d),e.d*this.d)},gcd:function(a,c){n(a,c);return m(w(e.n,this.n)*w(e.d,this.d),e.d*this.d)},lcm:function(a,c){n(a,c);return 0===e.n&&0===this.n?m(0,1):m(e.n*this.n,w(e.n,this.n)*w(e.d,this.d))},ceil:function(a){a=Math.pow(10,a||0);return isNaN(this.n)||isNaN(this.d)?new p(NaN):m(Math.ceil(a*this.s*this.n/this.d),a)},floor:function(a){a=Math.pow(10,
|
||||
a||0);return isNaN(this.n)||isNaN(this.d)?new p(NaN):m(Math.floor(a*this.s*this.n/this.d),a)},round:function(a){a=Math.pow(10,a||0);return isNaN(this.n)||isNaN(this.d)?new p(NaN):m(Math.round(a*this.s*this.n/this.d),a)},roundTo:function(a,c){n(a,c);return m(this.s*Math.round(this.n*e.d/(this.d*e.n))*e.n,e.d)},inverse:function(){return m(this.s*this.d,this.n)},pow:function(a,c){n(a,c);if(1===e.d)return 0>e.s?m(Math.pow(this.s*this.d,e.n),Math.pow(this.n,e.n)):m(Math.pow(this.s*this.n,e.n),Math.pow(this.d,
|
||||
e.n));if(0>this.s)return null;var b=A(this.n),d=A(this.d),f=1,l=1,k;for(k in b)if("1"!==k){if("0"===k){f=0;break}b[k]*=e.n;if(0===b[k]%e.d)b[k]/=e.d;else return null;f*=Math.pow(k,b[k])}for(k in d)if("1"!==k){d[k]*=e.n;if(0===d[k]%e.d)d[k]/=e.d;else return null;l*=Math.pow(k,d[k])}return 0>e.s?m(l,f):m(f,l)},equals:function(a,c){n(a,c);return this.s*this.n*e.d===e.s*e.n*this.d},compare:function(a,c){n(a,c);var b=this.s*this.n*e.d-e.s*e.n*this.d;return(0<b)-(0>b)},simplify:function(a){if(isNaN(this.n)||
|
||||
isNaN(this.d))return this;a=a||.001;for(var c=this.abs(),b=c.toContinued(),d=1;d<b.length;d++){for(var f=m(b[d-1],1),l=d-2;0<=l;l--)f=f.inverse().add(b[l]);if(Math.abs(f.sub(c).valueOf())<a)return f.mul(this.s)}return this},divisible:function(a,c){n(a,c);return!(!(e.n*this.d)||this.n*e.d%(e.n*this.d))},valueOf:function(){return this.s*this.n/this.d},toFraction:function(a){var c,b="",d=this.n,f=this.d;0>this.s&&(b+="-");1===f?b+=d:(a&&0<(c=Math.floor(d/f))&&(b=b+c+" ",d%=f),b=b+d+"/",b+=f);return b},
|
||||
toLatex:function(a){var c,b="",d=this.n,f=this.d;0>this.s&&(b+="-");1===f?b+=d:(a&&0<(c=Math.floor(d/f))&&(b+=c,d%=f),b=b+"\\frac{"+d+"}{"+f,b+="}");return b},toContinued:function(){var a=this.n,c=this.d,b=[];if(isNaN(a)||isNaN(c))return b;do{b.push(Math.floor(a/c));var d=a%c;a=c;c=d}while(1!==a);return b},toString:function(a){var c=this.n,b=this.d;if(isNaN(c)||isNaN(b))return"NaN";var d;a:{for(d=b;0===d%2;d/=2);for(;0===d%5;d/=5);if(1===d)d=0;else{for(var f=10%d,l=1;1!==f;l++)if(f=10*f%d,2E3<l){d=
|
||||
0;break a}d=l}}a:{f=1;l=10;for(var k=d,t=1;0<k;l=l*l%b,k>>=1)k&1&&(t=t*l%b);l=t;for(k=0;300>k;k++){if(f===l){l=k;break a}f=10*f%b;l=10*l%b}l=0}f=0>this.s?"-":"";f+=c/b|0;(c=c%b*10)&&(f+=".");if(d){for(a=l;a--;)f+=c/b|0,c%=b,c*=10;f+="(";for(a=d;a--;)f+=c/b|0,c%=b,c*=10;f+=")"}else for(a=a||15;c&&a--;)f+=c/b|0,c%=b,c*=10;return f}};"object"===typeof exports?(Object.defineProperty(exports,"__esModule",{value:!0}),exports["default"]=p,module.exports=p):B.Fraction=p})(this);
|
55
app_vue/node_modules/fraction.js/package.json
generated
vendored
Normal file
55
app_vue/node_modules/fraction.js/package.json
generated
vendored
Normal file
@ -0,0 +1,55 @@
|
||||
{
|
||||
"name": "fraction.js",
|
||||
"title": "fraction.js",
|
||||
"version": "4.3.7",
|
||||
"homepage": "https://www.xarg.org/2014/03/rational-numbers-in-javascript/",
|
||||
"bugs": "https://github.com/rawify/Fraction.js/issues",
|
||||
"description": "A rational number library",
|
||||
"keywords": [
|
||||
"math",
|
||||
"fraction",
|
||||
"rational",
|
||||
"rationals",
|
||||
"number",
|
||||
"parser",
|
||||
"rational numbers"
|
||||
],
|
||||
"author": {
|
||||
"name": "Robert Eisele",
|
||||
"email": "robert@raw.org",
|
||||
"url": "https://raw.org/"
|
||||
},
|
||||
"type": "module",
|
||||
"main": "fraction.cjs",
|
||||
"exports": {
|
||||
".": {
|
||||
"import": "./fraction.js",
|
||||
"require": "./fraction.cjs",
|
||||
"types": "./fraction.d.ts"
|
||||
}
|
||||
},
|
||||
"types": "./fraction.d.ts",
|
||||
"private": false,
|
||||
"readmeFilename": "README.md",
|
||||
"directories": {
|
||||
"example": "examples"
|
||||
},
|
||||
"license": "MIT",
|
||||
"repository": {
|
||||
"type": "git",
|
||||
"url": "git://github.com/rawify/Fraction.js.git"
|
||||
},
|
||||
"funding": {
|
||||
"type": "patreon",
|
||||
"url": "https://github.com/sponsors/rawify"
|
||||
},
|
||||
"engines": {
|
||||
"node": "*"
|
||||
},
|
||||
"scripts": {
|
||||
"test": "mocha tests/*.js"
|
||||
},
|
||||
"devDependencies": {
|
||||
"mocha": "*"
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user